Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg10b Structured version   Unicode version

Theorem cdlemg10b 36777
Description: TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in ltrn* area? (Contributed by NM, 4-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l  |-  .<_  =  ( le `  K )
cdlemg8.j  |-  .\/  =  ( join `  K )
cdlemg8.m  |-  ./\  =  ( meet `  K )
cdlemg8.a  |-  A  =  ( Atoms `  K )
cdlemg8.h  |-  H  =  ( LHyp `  K
)
cdlemg8.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg10b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( ( F `  P )  .\/  ( F `  Q )
)  ./\  W )  =  ( ( P 
.\/  Q )  ./\  W ) )

Proof of Theorem cdlemg10b
StepHypRef Expression
1 cdlemg8.h . 2  |-  H  =  ( LHyp `  K
)
2 cdlemg8.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
3 cdlemg8.l . 2  |-  .<_  =  ( le `  K )
4 cdlemg8.j . 2  |-  .\/  =  ( join `  K )
5 cdlemg8.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemg8.m . 2  |-  ./\  =  ( meet `  K )
7 eqid 2454 . 2  |-  ( ( P  .\/  Q ) 
./\  W )  =  ( ( P  .\/  Q )  ./\  W )
81, 2, 3, 4, 5, 6, 7cdlemg2m 36746 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( ( F `  P )  .\/  ( F `  Q )
)  ./\  W )  =  ( ( P 
.\/  Q )  ./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   lecple 14794   joincjn 15775   meetcmee 15776   Atomscatm 35404   HLchlt 35491   LHypclh 36124   LTrncltrn 36241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-riotaBAD 35100
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-undef 6994  df-map 7414  df-preset 15759  df-poset 15777  df-plt 15790  df-lub 15806  df-glb 15807  df-join 15808  df-meet 15809  df-p0 15871  df-p1 15872  df-lat 15878  df-clat 15940  df-oposet 35317  df-ol 35319  df-oml 35320  df-covers 35407  df-ats 35408  df-atl 35439  df-cvlat 35463  df-hlat 35492  df-llines 35638  df-lplanes 35639  df-lvols 35640  df-lines 35641  df-psubsp 35643  df-pmap 35644  df-padd 35936  df-lhyp 36128  df-laut 36129  df-ldil 36244  df-ltrn 36245  df-trl 36300
This theorem is referenced by:  cdlemg10c  36781
  Copyright terms: Public domain W3C validator