![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemftr0 | Structured version Unicode version |
Description: Special case of cdlemf 34513 showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
cdlemftr0.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemftr0.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemftr0.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cdlemftr0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemftr0.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cdlemftr0.h |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | cdlemftr0.t |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eqid 2451 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | cdlemftr1 34517 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | simpl 457 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 6 | reximi 2919 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 5, 7 | syl 16 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-rep 4501 ax-sep 4511 ax-nul 4519 ax-pow 4568 ax-pr 4629 ax-un 6472 ax-riotaBAD 32910 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-nel 2647 df-ral 2800 df-rex 2801 df-reu 2802 df-rmo 2803 df-rab 2804 df-v 3070 df-sbc 3285 df-csb 3387 df-dif 3429 df-un 3431 df-in 3433 df-ss 3440 df-nul 3736 df-if 3890 df-pw 3960 df-sn 3976 df-pr 3978 df-op 3982 df-uni 4190 df-iun 4271 df-iin 4272 df-br 4391 df-opab 4449 df-mpt 4450 df-id 4734 df-xp 4944 df-rel 4945 df-cnv 4946 df-co 4947 df-dm 4948 df-rn 4949 df-res 4950 df-ima 4951 df-iota 5479 df-fun 5518 df-fn 5519 df-f 5520 df-f1 5521 df-fo 5522 df-f1o 5523 df-fv 5524 df-riota 6151 df-ov 6193 df-oprab 6194 df-mpt2 6195 df-1st 6677 df-2nd 6678 df-undef 6892 df-map 7316 df-poset 15218 df-plt 15230 df-lub 15246 df-glb 15247 df-join 15248 df-meet 15249 df-p0 15311 df-p1 15312 df-lat 15318 df-clat 15380 df-oposet 33127 df-ol 33129 df-oml 33130 df-covers 33217 df-ats 33218 df-atl 33249 df-cvlat 33273 df-hlat 33302 df-llines 33448 df-lplanes 33449 df-lvols 33450 df-lines 33451 df-psubsp 33453 df-pmap 33454 df-padd 33746 df-lhyp 33938 df-laut 33939 df-ldil 34054 df-ltrn 34055 df-trl 34109 |
This theorem is referenced by: tendo0mul 34776 tendo0mulr 34777 tendo1ne0 34778 tendoconid 34779 cdleml4N 34929 erngdv 34943 erngdv-rN 34951 |
Copyright terms: Public domain | W3C validator |