Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf2 Structured version   Unicode version

Theorem cdlemf2 35759
Description: Part of Lemma F in [Crawley] p. 116. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l  |-  .<_  =  ( le `  K )
cdlemf1.j  |-  .\/  =  ( join `  K )
cdlemf1.a  |-  A  =  ( Atoms `  K )
cdlemf1.h  |-  H  =  ( LHyp `  K
)
cdlemf2.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemf2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p  .\/  q
)  ./\  W )
) )
Distinct variable groups:    q, p, A    H, p, q    K, p, q    .<_ , p, q    U, p, q    W, p, q
Allowed substitution hints:    .\/ ( q, p)    ./\ ( q, p)

Proof of Theorem cdlemf2
StepHypRef Expression
1 cdlemf1.l . . . 4  |-  .<_  =  ( le `  K )
2 cdlemf1.a . . . 4  |-  A  =  ( Atoms `  K )
3 cdlemf1.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 35203 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p  .<_  W )
54adantr 465 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. p  e.  A  -.  p  .<_  W )
6 cdlemf1.j . . . . . . 7  |-  .\/  =  ( join `  K )
71, 6, 2, 3cdlemf1 35758 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  E. q  e.  A  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) )
8 simpr1r 1054 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  -.  p  .<_  W )
9 simpr32 1087 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  -.  q  .<_  W )
10 simpr33 1088 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  U  .<_  ( p  .\/  q ) )
11 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  U  .<_  W )
12 hllat 34561 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  Lat )
1312ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  K  e.  Lat )
14 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  U  e.  A )
15 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
1615, 2atbase 34487 . . . . . . . . . . . . . 14  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1714, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  U  e.  ( Base `  K )
)
18 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  K  e.  HL )
19 simpr1l 1053 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  p  e.  A )
20 simpr2 1003 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  q  e.  A )
2115, 6, 2hlatjcl 34564 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  e.  ( Base `  K ) )
2218, 19, 20, 21syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  ( p  .\/  q )  e.  (
Base `  K )
)
2315, 3lhpbase 35195 . . . . . . . . . . . . . 14  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2423ad3antlr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  W  e.  ( Base `  K )
)
25 cdlemf2.m . . . . . . . . . . . . . 14  |-  ./\  =  ( meet `  K )
2615, 1, 25latlem12 15582 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( U  .<_  ( p 
.\/  q )  /\  U  .<_  W )  <->  U  .<_  ( ( p  .\/  q
)  ./\  W )
) )
2713, 17, 22, 24, 26syl13anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  ( ( U  .<_  ( p  .\/  q )  /\  U  .<_  W )  <->  U  .<_  ( ( p  .\/  q
)  ./\  W )
) )
2810, 11, 27mpbi2and 919 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  U  .<_  ( ( p  .\/  q
)  ./\  W )
)
29 hlatl 34558 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  AtLat )
3029ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  K  e.  AtLat
)
31 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
32 simpr31 1086 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  p  =/=  q )
331, 6, 25, 2, 3lhpat 35240 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p  .<_  W )  /\  (
q  e.  A  /\  p  =/=  q ) )  ->  ( ( p 
.\/  q )  ./\  W )  e.  A )
3431, 19, 8, 20, 32, 33syl122anc 1237 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  ( (
p  .\/  q )  ./\  W )  e.  A
)
351, 2atcmp 34509 . . . . . . . . . . . 12  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  (
( p  .\/  q
)  ./\  W )  e.  A )  ->  ( U  .<_  ( ( p 
.\/  q )  ./\  W )  <->  U  =  (
( p  .\/  q
)  ./\  W )
) )
3630, 14, 34, 35syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  ( U  .<_  ( ( p  .\/  q )  ./\  W
)  <->  U  =  (
( p  .\/  q
)  ./\  W )
) )
3728, 36mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  U  =  ( ( p  .\/  q )  ./\  W
) )
388, 9, 37jca31 534 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( ( p  e.  A  /\  -.  p  .<_  W )  /\  q  e.  A  /\  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) ) ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p  .\/  q
)  ./\  W )
) )
39383exp2 1214 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  -.  p  .<_  W )  ->  ( q  e.  A  ->  ( (
p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) )  -> 
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p 
.\/  q )  ./\  W ) ) ) ) ) )
40393impia 1193 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  ( q  e.  A  ->  ( (
p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) )  -> 
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p 
.\/  q )  ./\  W ) ) ) ) )
4140reximdvai 2939 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  ( E. q  e.  A  ( p  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( p  .\/  q ) )  ->  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p  .\/  q
)  ./\  W )
) ) )
427, 41mpd 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p 
.\/  q )  ./\  W ) ) )
43423expia 1198 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  -.  p  .<_  W )  ->  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p 
.\/  q )  ./\  W ) ) ) )
4443expd 436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
p  e.  A  -> 
( -.  p  .<_  W  ->  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p 
.\/  q )  ./\  W ) ) ) ) )
4544reximdvai 2939 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  ( E. p  e.  A  -.  p  .<_  W  ->  E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p 
.\/  q )  ./\  W ) ) ) )
465, 45mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p  .\/  q
)  ./\  W )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2818   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   meetcmee 15449   Latclat 15549   Atomscatm 34461   AtLatcal 34462   HLchlt 34548   LHypclh 35181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-lhyp 35185
This theorem is referenced by:  cdlemf  35760
  Copyright terms: Public domain W3C validator