Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf1 Unicode version

Theorem cdlemf1 31043
Description: Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l  |-  .<_  =  ( le `  K )
cdlemf1.j  |-  .\/  =  ( join `  K )
cdlemf1.a  |-  A  =  ( Atoms `  K )
cdlemf1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemf1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. q  e.  A  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q ) ) )
Distinct variable groups:    A, q    H, q    K, q    .<_ , q    P, q    U, q    W, q
Allowed substitution hint:    .\/ ( q)

Proof of Theorem cdlemf1
StepHypRef Expression
1 simp1l 981 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 simp3l 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A
)
3 simp2l 983 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  U  e.  A
)
4 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  U  .<_  W )
5 simp3r 986 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
6 nbrne2 4190 . . . . 5  |-  ( ( U  .<_  W  /\  -.  P  .<_  W )  ->  U  =/=  P
)
76necomd 2650 . . . 4  |-  ( ( U  .<_  W  /\  -.  P  .<_  W )  ->  P  =/=  U
)
84, 5, 7syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  U
)
9 cdlemf1.l . . . 4  |-  .<_  =  ( le `  K )
10 cdlemf1.j . . . 4  |-  .\/  =  ( join `  K )
11 cdlemf1.a . . . 4  |-  A  =  ( Atoms `  K )
129, 10, 11hlsupr 29868 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  /\  P  =/=  U
)  ->  E. q  e.  A  ( q  =/=  P  /\  q  =/= 
U  /\  q  .<_  ( P  .\/  U ) ) )
131, 2, 3, 8, 12syl31anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P 
.\/  U ) ) )
14 simp31 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  =/=  P )
1514necomd 2650 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  =/=  q )
16 simp13r 1073 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  -.  P  .<_  W )
17 simp12r 1071 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  .<_  W )
18 simp11l 1068 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  K  e.  HL )
19 hllat 29846 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
2018, 19syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  K  e.  Lat )
21 eqid 2404 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
2221, 11atbase 29772 . . . . . . . . . . 11  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
23223ad2ant2 979 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  e.  ( Base `  K
) )
24 simp12l 1070 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  e.  A )
2521, 11atbase 29772 . . . . . . . . . . 11  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  e.  ( Base `  K
) )
27 simp11r 1069 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  W  e.  H )
28 cdlemf1.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
2921, 28lhpbase 30480 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3027, 29syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  W  e.  ( Base `  K
) )
3121, 9, 10latjle12 14446 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( q  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( ( q 
.<_  W  /\  U  .<_  W )  <->  ( q  .\/  U )  .<_  W )
)
3220, 23, 26, 30, 31syl13anc 1186 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( q  .<_  W  /\  U  .<_  W )  <->  ( q  .\/  U )  .<_  W ) )
3332biimpd 199 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( q  .<_  W  /\  U  .<_  W )  -> 
( q  .\/  U
)  .<_  W ) )
3417, 33mpan2d 656 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  W  ->  (
q  .\/  U )  .<_  W ) )
35 simp33 995 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  .<_  ( P  .\/  U
) )
36 hlcvl 29842 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  CvLat )
3718, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  K  e.  CvLat )
38 simp2 958 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  e.  A )
39 simp13l 1072 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  e.  A )
40 simp32 994 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  =/=  U )
419, 10, 11cvlatexch2 29820 . . . . . . . . . 10  |-  ( ( K  e.  CvLat  /\  (
q  e.  A  /\  P  e.  A  /\  U  e.  A )  /\  q  =/=  U
)  ->  ( q  .<_  ( P  .\/  U
)  ->  P  .<_  ( q  .\/  U ) ) )
4237, 38, 39, 24, 40, 41syl131anc 1197 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  ( P  .\/  U )  ->  P  .<_  ( q  .\/  U ) ) )
4335, 42mpd 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  .<_  ( q  .\/  U
) )
4421, 11atbase 29772 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
4539, 44syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  e.  ( Base `  K
) )
4621, 10, 11hlatjcl 29849 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  q  e.  A  /\  U  e.  A )  ->  ( q  .\/  U
)  e.  ( Base `  K ) )
4718, 38, 24, 46syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .\/  U )  e.  ( Base `  K
) )
4821, 9lattr 14440 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( q  .\/  U
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( q  .\/  U )  /\  ( q  .\/  U )  .<_  W )  ->  P  .<_  W )
)
4920, 45, 47, 30, 48syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( P  .<_  ( q 
.\/  U )  /\  ( q  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
5043, 49mpand 657 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( q  .\/  U
)  .<_  W  ->  P  .<_  W ) )
5134, 50syld 42 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  W  ->  P  .<_  W ) )
5216, 51mtod 170 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  -.  q  .<_  W )
539, 10, 11cvlatexch1 29819 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  (
q  e.  A  /\  U  e.  A  /\  P  e.  A )  /\  q  =/=  P
)  ->  ( q  .<_  ( P  .\/  U
)  ->  U  .<_  ( P  .\/  q ) ) )
5437, 38, 24, 39, 14, 53syl131anc 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  ( P  .\/  U )  ->  U  .<_  ( P  .\/  q ) ) )
5535, 54mpd 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  .<_  ( P  .\/  q
) )
5615, 52, 553jca 1134 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q
) ) )
57563exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( q  e.  A  ->  ( (
q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U
) )  ->  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q
) ) ) ) )
5857reximdvai 2776 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( E. q  e.  A  ( q  =/=  P  /\  q  =/= 
U  /\  q  .<_  ( P  .\/  U ) )  ->  E. q  e.  A  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q ) ) ) )
5913, 58mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. q  e.  A  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   Latclat 14429   Atomscatm 29746   CvLatclc 29748   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdlemf2  31044  cdlemg5  31087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-join 14388  df-lat 14430  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-lhyp 30470
  Copyright terms: Public domain W3C validator