Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf Structured version   Unicode version

Theorem cdlemf 36411
Description: Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf.l  |-  .<_  =  ( le `  K )
cdlemf.a  |-  A  =  ( Atoms `  K )
cdlemf.h  |-  H  =  ( LHyp `  K
)
cdlemf.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemf.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemf  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. f  e.  T  ( R `  f )  =  U )
Distinct variable groups:    A, f    f, H    f, K    .<_ , f    T, f    U, f    f, W
Allowed substitution hint:    R( f)

Proof of Theorem cdlemf
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemf.l . . 3  |-  .<_  =  ( le `  K )
2 eqid 2457 . . 3  |-  ( join `  K )  =  (
join `  K )
3 cdlemf.a . . 3  |-  A  =  ( Atoms `  K )
4 cdlemf.h . . 3  |-  H  =  ( LHyp `  K
)
5 eqid 2457 . . 3  |-  ( meet `  K )  =  (
meet `  K )
61, 2, 3, 4, 5cdlemf2 36410 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) ) )
7 simp1l 1020 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2l 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  p  e.  A
)
9 simp3ll 1067 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  -.  p  .<_  W )
10 simp2r 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  q  e.  A
)
11 simp3lr 1068 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  -.  q  .<_  W )
12 cdlemf.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
131, 3, 4, 12cdleme50ex 36407 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p  .<_  W )  /\  (
q  e.  A  /\  -.  q  .<_  W ) )  ->  E. f  e.  T  ( f `  p )  =  q )
147, 8, 9, 10, 11, 13syl122anc 1237 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  E. f  e.  T  ( f `  p
)  =  q )
15 simp3r 1025 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( f `  p )  =  q )
1615oveq2d 6312 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( p
( join `  K )
( f `  p
) )  =  ( p ( join `  K
) q ) )
1716oveq1d 6311 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( (
p ( join `  K
) ( f `  p ) ) (
meet `  K ) W )  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) )
18 simp11 1026 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simp3l 1024 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  f  e.  T )
20 simp13l 1111 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  p  e.  A )
21 simp2ll 1063 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  -.  p  .<_  W )
22 cdlemf.r . . . . . . . . . . . . 13  |-  R  =  ( ( trL `  K
) `  W )
231, 2, 5, 3, 4, 12, 22trlval2 36010 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  ( R `  f )  =  ( ( p ( join `  K ) ( f `
 p ) ) ( meet `  K
) W ) )
2418, 19, 20, 21, 23syl112anc 1232 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( R `  f )  =  ( ( p ( join `  K ) ( f `
 p ) ) ( meet `  K
) W ) )
25 simp2r 1023 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  U  =  ( ( p (
join `  K )
q ) ( meet `  K ) W ) )
2617, 24, 253eqtr4d 2508 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( R `  f )  =  U )
27263exp 1195 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) )  ->  ( ( f  e.  T  /\  (
f `  p )  =  q )  -> 
( R `  f
)  =  U ) ) )
28273expia 1198 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  q  e.  A
)  ->  ( (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  -> 
( ( f  e.  T  /\  ( f `
 p )  =  q )  ->  ( R `  f )  =  U ) ) ) )
29283imp 1190 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( ( f  e.  T  /\  (
f `  p )  =  q )  -> 
( R `  f
)  =  U ) )
3029expd 436 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( f  e.  T  ->  ( (
f `  p )  =  q  ->  ( R `
 f )  =  U ) ) )
3130reximdvai 2929 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( E. f  e.  T  ( f `  p )  =  q  ->  E. f  e.  T  ( R `  f )  =  U ) )
3214, 31mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  E. f  e.  T  ( R `  f )  =  U )
33323exp 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  q  e.  A
)  ->  ( (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  ->  E. f  e.  T  ( R `  f )  =  U ) ) )
3433rexlimdvv 2955 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  ( E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  ->  E. f  e.  T  ( R `  f )  =  U ) )
356, 34mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. f  e.  T  ( R `  f )  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   E.wrex 2808   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   lecple 14719   joincjn 15700   meetcmee 15701   Atomscatm 35110   HLchlt 35197   LHypclh 35830   LTrncltrn 35947   trLctrl 36005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-riotaBAD 34806
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-undef 7020  df-map 7440  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35023  df-ol 35025  df-oml 35026  df-covers 35113  df-ats 35114  df-atl 35145  df-cvlat 35169  df-hlat 35198  df-llines 35344  df-lplanes 35345  df-lvols 35346  df-lines 35347  df-psubsp 35349  df-pmap 35350  df-padd 35642  df-lhyp 35834  df-laut 35835  df-ldil 35950  df-ltrn 35951  df-trl 36006
This theorem is referenced by:  cdlemfnid  36412  trlord  36417  dih1dimb2  37090
  Copyright terms: Public domain W3C validator