Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf Structured version   Unicode version

Theorem cdlemf 34099
Description: Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf.l  |-  .<_  =  ( le `  K )
cdlemf.a  |-  A  =  ( Atoms `  K )
cdlemf.h  |-  H  =  ( LHyp `  K
)
cdlemf.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemf.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemf  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. f  e.  T  ( R `  f )  =  U )
Distinct variable groups:    A, f    f, H    f, K    .<_ , f    T, f    U, f    f, W
Allowed substitution hint:    R( f)

Proof of Theorem cdlemf
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemf.l . . 3  |-  .<_  =  ( le `  K )
2 eqid 2422 . . 3  |-  ( join `  K )  =  (
join `  K )
3 cdlemf.a . . 3  |-  A  =  ( Atoms `  K )
4 cdlemf.h . . 3  |-  H  =  ( LHyp `  K
)
5 eqid 2422 . . 3  |-  ( meet `  K )  =  (
meet `  K )
61, 2, 3, 4, 5cdlemf2 34098 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) ) )
7 simp1l 1029 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2l 1031 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  p  e.  A
)
9 simp3ll 1076 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  -.  p  .<_  W )
10 simp2r 1032 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  q  e.  A
)
11 simp3lr 1077 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  -.  q  .<_  W )
12 cdlemf.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
131, 3, 4, 12cdleme50ex 34095 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p  .<_  W )  /\  (
q  e.  A  /\  -.  q  .<_  W ) )  ->  E. f  e.  T  ( f `  p )  =  q )
147, 8, 9, 10, 11, 13syl122anc 1273 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  E. f  e.  T  ( f `  p
)  =  q )
15 simp3r 1034 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( f `  p )  =  q )
1615oveq2d 6321 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( p
( join `  K )
( f `  p
) )  =  ( p ( join `  K
) q ) )
1716oveq1d 6320 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( (
p ( join `  K
) ( f `  p ) ) (
meet `  K ) W )  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) )
18 simp11 1035 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simp3l 1033 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  f  e.  T )
20 simp13l 1120 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  p  e.  A )
21 simp2ll 1072 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  -.  p  .<_  W )
22 cdlemf.r . . . . . . . . . . . . 13  |-  R  =  ( ( trL `  K
) `  W )
231, 2, 5, 3, 4, 12, 22trlval2 33698 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  ( R `  f )  =  ( ( p ( join `  K ) ( f `
 p ) ) ( meet `  K
) W ) )
2418, 19, 20, 21, 23syl112anc 1268 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( R `  f )  =  ( ( p ( join `  K ) ( f `
 p ) ) ( meet `  K
) W ) )
25 simp2r 1032 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  U  =  ( ( p (
join `  K )
q ) ( meet `  K ) W ) )
2617, 24, 253eqtr4d 2473 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( R `  f )  =  U )
27263exp 1204 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) )  ->  ( ( f  e.  T  /\  (
f `  p )  =  q )  -> 
( R `  f
)  =  U ) ) )
28273expia 1207 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  q  e.  A
)  ->  ( (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  -> 
( ( f  e.  T  /\  ( f `
 p )  =  q )  ->  ( R `  f )  =  U ) ) ) )
29283imp 1199 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( ( f  e.  T  /\  (
f `  p )  =  q )  -> 
( R `  f
)  =  U ) )
3029expd 437 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( f  e.  T  ->  ( (
f `  p )  =  q  ->  ( R `
 f )  =  U ) ) )
3130reximdvai 2894 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( E. f  e.  T  ( f `  p )  =  q  ->  E. f  e.  T  ( R `  f )  =  U ) )
3214, 31mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  E. f  e.  T  ( R `  f )  =  U )
33323exp 1204 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  q  e.  A
)  ->  ( (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  ->  E. f  e.  T  ( R `  f )  =  U ) ) )
3433rexlimdvv 2920 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  ( E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  ->  E. f  e.  T  ( R `  f )  =  U ) )
356, 34mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. f  e.  T  ( R `  f )  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   E.wrex 2772   class class class wbr 4423   ` cfv 5601  (class class class)co 6305   lecple 15196   joincjn 16188   meetcmee 16189   Atomscatm 32798   HLchlt 32885   LHypclh 33518   LTrncltrn 33635   trLctrl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-riotaBAD 32494
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7031  df-map 7485  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-llines 33032  df-lplanes 33033  df-lvols 33034  df-lines 33035  df-psubsp 33037  df-pmap 33038  df-padd 33330  df-lhyp 33522  df-laut 33523  df-ldil 33638  df-ltrn 33639  df-trl 33694
This theorem is referenced by:  cdlemfnid  34100  trlord  34105  dih1dimb2  34778
  Copyright terms: Public domain W3C validator