Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg47rv2 Structured version   Unicode version

Theorem cdlemeg47rv2 36379
Description: Value of gs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO FIX COMMENT (Contributed by NM, 1-Apr-2013.)
Hypotheses
Ref Expression
cdlemef47.b  |-  B  =  ( Base `  K
)
cdlemef47.l  |-  .<_  =  ( le `  K )
cdlemef47.j  |-  .\/  =  ( join `  K )
cdlemef47.m  |-  ./\  =  ( meet `  K )
cdlemef47.a  |-  A  =  ( Atoms `  K )
cdlemef47.h  |-  H  =  ( LHyp `  K
)
cdlemef47.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef47.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs47.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef47.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
Assertion
Ref Expression
cdlemeg47rv2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  R )  =  ( ( Q  .\/  P
)  ./\  ( ( G `  S )  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
Distinct variable groups:    a, b,
c, u, v, A    B, a, b, c, u, v    H, a, b, c, u, v    .\/ , a,
b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a,
b, c, u, v    N, a, b, c, u    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    R, a, b, c, u, v    S, a, b, c, u, v    V, a, b, c, u, v    W, a, b, c, u, v
Allowed substitution hints:    G( v, u, a, b, c)    N( v)    O( v, u)

Proof of Theorem cdlemeg47rv2
StepHypRef Expression
1 cdlemef47.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemef47.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemef47.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemef47.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemef47.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemef47.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemef47.v . . 3  |-  V  =  ( ( Q  .\/  P )  ./\  W )
8 cdlemef47.n . . 3  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
9 cdlemefs47.o . . 3  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
10 cdlemef47.g . . 3  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdlemeg47rv 36378 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  R )  =  [_ R  /  u ]_ [_ S  /  v ]_ O
)
12 simp22l 1115 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
13 nfcvd 2620 . . . . 5  |-  ( R  e.  A  ->  F/_ u
( ( Q  .\/  P )  ./\  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
14 oveq1 6303 . . . . . . . 8  |-  ( u  =  R  ->  (
u  .\/  S )  =  ( R  .\/  S ) )
1514oveq1d 6311 . . . . . . 7  |-  ( u  =  R  ->  (
( u  .\/  S
)  ./\  W )  =  ( ( R 
.\/  S )  ./\  W ) )
1615oveq2d 6312 . . . . . 6  |-  ( u  =  R  ->  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S ) 
./\  W ) )  =  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) )
1716oveq2d 6312 . . . . 5  |-  ( u  =  R  ->  (
( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S )  ./\  W )
) )  =  ( ( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
1813, 17csbiegf 3454 . . . 4  |-  ( R  e.  A  ->  [_ R  /  u ]_ ( ( Q  .\/  P ) 
./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S )  ./\  W )
) )  =  ( ( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
1912, 18syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  [_ R  /  u ]_ ( ( Q 
.\/  P )  ./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S ) 
./\  W ) ) )  =  ( ( Q  .\/  P ) 
./\  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
20 simp23l 1117 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
21 eqid 2457 . . . . . 6  |-  ( ( Q  .\/  P ) 
./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S )  ./\  W )
) )  =  ( ( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S )  ./\  W )
) )
229, 21cdleme31se2 36252 . . . . 5  |-  ( S  e.  A  ->  [_ S  /  v ]_ O  =  ( ( Q 
.\/  P )  ./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S ) 
./\  W ) ) ) )
2320, 22syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  [_ S  / 
v ]_ O  =  ( ( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S )  ./\  W )
) ) )
2423csbeq2dv 3843 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  [_ R  /  u ]_ [_ S  / 
v ]_ O  =  [_ R  /  u ]_ (
( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( u  .\/  S )  ./\  W )
) ) )
25 simp1 996 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
26 simp21 1029 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
27 simp23 1031 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
28 simp3r 1025 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
291, 2, 3, 4, 5, 6, 7, 8, 9, 10cdlemeg47b 36377 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( G `  S )  =  [_ S  /  v ]_ N )
3025, 26, 27, 28, 29syl121anc 1233 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  S )  =  [_ S  /  v ]_ N
)
3130oveq1d 6311 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( G `  S )  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) )
3231oveq2d 6312 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( Q  .\/  P )  ./\  ( ( G `  S )  .\/  (
( R  .\/  S
)  ./\  W )
) )  =  ( ( Q  .\/  P
)  ./\  ( [_ S  /  v ]_ N  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
3319, 24, 323eqtr4d 2508 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  [_ R  /  u ]_ [_ S  / 
v ]_ O  =  ( ( Q  .\/  P
)  ./\  ( ( G `  S )  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
3411, 33eqtrd 2498 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  R )  =  ( ( Q  .\/  P
)  ./\  ( ( G `  S )  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   [_csb 3430   ifcif 3944   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594   iota_crio 6257  (class class class)co 6296   Basecbs 14644   lecple 14719   joincjn 15700   meetcmee 15701   Atomscatm 35131   HLchlt 35218   LHypclh 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-riotaBAD 34827
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-undef 7020  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-llines 35365  df-lplanes 35366  df-lvols 35367  df-lines 35368  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855
This theorem is referenced by:  cdlemeg46rv2OLDN  36384  cdlemeg46gfv  36399
  Copyright terms: Public domain W3C validator