Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg47b Structured version   Unicode version

Theorem cdlemeg47b 33874
Description: TODO FIX COMMENT (Contributed by NM, 1-Apr-2013.)
Hypotheses
Ref Expression
cdlemef47.b  |-  B  =  ( Base `  K
)
cdlemef47.l  |-  .<_  =  ( le `  K )
cdlemef47.j  |-  .\/  =  ( join `  K )
cdlemef47.m  |-  ./\  =  ( meet `  K )
cdlemef47.a  |-  A  =  ( Atoms `  K )
cdlemef47.h  |-  H  =  ( LHyp `  K
)
cdlemef47.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef47.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs47.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef47.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
Assertion
Ref Expression
cdlemeg47b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( G `  S )  =  [_ S  /  v ]_ N )
Distinct variable groups:    a, b,
c, u, v, A    B, a, b, c, u, v    H, a, b, c, u, v    .\/ , a,
b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a,
b, c, u, v    N, a, b, c, u    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    S, a, b, c, u, v    V, a, b, c, u, v    W, a, b, c, u, v
Allowed substitution hints:    G( v, u, a, b, c)    N( v)    O( v, u)

Proof of Theorem cdlemeg47b
StepHypRef Expression
1 cdlemef47.j . . 3  |-  .\/  =  ( join `  K )
2 cdlemef47.a . . 3  |-  A  =  ( Atoms `  K )
31, 2cdleme46f2g2 33859 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  =/=  P  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( Q  .\/  P
) ) )
4 cdlemef47.b . . 3  |-  B  =  ( Base `  K
)
5 cdlemef47.l . . 3  |-  .<_  =  ( le `  K )
6 cdlemef47.m . . 3  |-  ./\  =  ( meet `  K )
7 cdlemef47.h . . 3  |-  H  =  ( LHyp `  K
)
8 cdlemef47.v . . 3  |-  V  =  ( ( Q  .\/  P )  ./\  W )
9 cdlemef47.n . . 3  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
10 cdlemef47.g . . 3  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
114, 5, 1, 6, 2, 7, 8, 9, 10cdlemefr45 33793 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Q  =/=  P  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( Q  .\/  P
) )  ->  ( G `  S )  =  [_ S  /  v ]_ N )
123, 11syl 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( G `  S )  =  [_ S  /  v ]_ N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   [_csb 3285   ifcif 3788   class class class wbr 4289    e. cmpt 4347   ` cfv 5415   iota_crio 6048  (class class class)co 6090   Basecbs 14170   lecple 14241   joincjn 15110   meetcmee 15111   Atomscatm 32630   HLchlt 32717   LHypclh 33350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-lines 32867  df-psubsp 32869  df-pmap 32870  df-padd 33162  df-lhyp 33354
This theorem is referenced by:  cdlemeg47rv2  33876  cdlemeg46bOLDN  33878  cdlemeg46c  33879  cdlemeg46rjgN  33888
  Copyright terms: Public domain W3C validator