Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46rjgN Structured version   Unicode version

Theorem cdlemeg46rjgN 34006
Description: NOT NEEDED? TODO FIX COMMENT r  \/ g(s) = r  \/ v2 p. 115 last line. (Contributed by NM, 2-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef46g.b  |-  B  =  ( Base `  K
)
cdlemef46g.l  |-  .<_  =  ( le `  K )
cdlemef46g.j  |-  .\/  =  ( join `  K )
cdlemef46g.m  |-  ./\  =  ( meet `  K )
cdlemef46g.a  |-  A  =  ( Atoms `  K )
cdlemef46g.h  |-  H  =  ( LHyp `  K
)
cdlemef46g.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46g.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46g.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46g.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdlemef46.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef46.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs46.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef46.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
cdlemeg46.y  |-  Y  =  ( ( R  .\/  ( G `  S ) )  ./\  W )
Assertion
Ref Expression
cdlemeg46rjgN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( G `  S
) )  =  ( R  .\/  Y ) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    R, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    S, s, t, x, y, z    a, b, c, u, v, A    B, a, b, c, u, v    v, D    G, s, t, x, y, z    H, a, b, c, u, v    .\/ , a, b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a, b, c, u, v    N, a, b, c    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    R, a, b, c, u, v    S, a, b, c, u, v    V, a, b, c    W, a, b, c, u, v   
x, u, y, z, N    x, O, y, z    v, t    u, V    x, v, y, z, V    D, a, b, c    E, a, b, c    F, a, b, c, u, v   
t, N    U, a,
b, c, v    t, V    s, a, t, b, c
Allowed substitution hints:    D( u, t)    U( u)    E( v, u, t, s)    F( x, y, z, t, s)    G( v, u, a, b, c)    N( v, s)    O( v, u, t, s)    V( s)    Y( x, y, z, v, u, t, s, a, b, c)

Proof of Theorem cdlemeg46rjgN
StepHypRef Expression
1 cdlemef46g.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemef46g.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemef46g.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemef46g.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdlemef46g.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemef46g.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemef46g.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef46.v . . . 4  |-  V  =  ( ( Q  .\/  P )  ./\  W )
9 eqid 2438 . . . 4  |-  ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
10 eqid 2438 . . . 4  |-  ( ( P  .\/  Q ) 
./\  ( ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )  =  ( ( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )
11 eqid 2438 . . . 4  |-  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )
12 eqid 2438 . . . 4  |-  ( ( Q  .\/  P ) 
./\  ( ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  (
( ( ( P 
.\/  Q )  ./\  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  .\/  S ) 
./\  W ) ) )  =  ( ( Q  .\/  P ) 
./\  ( ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  (
( ( ( P 
.\/  Q )  ./\  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  .\/  S ) 
./\  W ) ) )
13 eqid 2438 . . . 4  |-  ( ( ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )  =  ( ( ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
14 eqid 2438 . . . 4  |-  ( ( ( ( P  .\/  Q )  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )  .\/  S
)  ./\  W )  =  ( ( ( ( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )  .\/  S
)  ./\  W )
15 eqid 2438 . . . 4  |-  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W )  =  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15cdleme43cN 33975 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( R  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  =  ( R  .\/  (
( R  .\/  (
( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
17163adant3l 1214 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  =  ( R  .\/  (
( R  .\/  (
( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
18 simp1 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
19 simp21 1021 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
20 simp23 1023 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
21 simp3r 1017 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
22 cdlemef46.n . . . . . 6  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
23 cdlemefs46.o . . . . . 6  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
24 cdlemef46.g . . . . . 6  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
251, 2, 3, 4, 5, 6, 8, 22, 23, 24cdlemeg47b 33992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( G `  S )  =  [_ S  /  v ]_ N )
2618, 19, 20, 21, 25syl121anc 1223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  S )  =  [_ S  /  v ]_ N
)
27 simp23l 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
2822, 11cdleme31sc 33868 . . . . 5  |-  ( S  e.  A  ->  [_ S  /  v ]_ N  =  ( ( S 
.\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S ) 
./\  W ) ) ) )
2927, 28syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  [_ S  / 
v ]_ N  =  ( ( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )
3026, 29eqtrd 2470 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  S )  =  ( ( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )
3130oveq2d 6102 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( G `  S
) )  =  ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) ) )
32 cdlemeg46.y . . . 4  |-  Y  =  ( ( R  .\/  ( G `  S ) )  ./\  W )
3331oveq1d 6101 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  ( G `  S ) )  ./\  W )  =  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) )
3432, 33syl5eq 2482 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Y  =  ( ( R  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) )
3534oveq2d 6102 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  Y )  =  ( R  .\/  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
3617, 31, 353eqtr4d 2480 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( G `  S
) )  =  ( R  .\/  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   [_csb 3283   ifcif 3786   class class class wbr 4287    e. cmpt 4345   ` cfv 5413   iota_crio 6046  (class class class)co 6086   Basecbs 14166   lecple 14237   joincjn 15106   meetcmee 15107   Atomscatm 32748   HLchlt 32835   LHypclh 33468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-p1 15202  df-lat 15208  df-clat 15270  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-lines 32985  df-psubsp 32987  df-pmap 32988  df-padd 33280  df-lhyp 33472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator