Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46rgv Structured version   Unicode version

Theorem cdlemeg46rgv 34491
Description: TODO FIX COMMENT r  <_ g(s)  \/ v1 p. 116 3rd line. (Contributed by NM, 3-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46g.b  |-  B  =  ( Base `  K
)
cdlemef46g.l  |-  .<_  =  ( le `  K )
cdlemef46g.j  |-  .\/  =  ( join `  K )
cdlemef46g.m  |-  ./\  =  ( meet `  K )
cdlemef46g.a  |-  A  =  ( Atoms `  K )
cdlemef46g.h  |-  H  =  ( LHyp `  K
)
cdlemef46g.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46g.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46g.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46g.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdlemef46.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef46.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs46.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef46.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
cdlemeg46.y  |-  Y  =  ( ( R  .\/  ( G `  S ) )  ./\  W )
cdlemeg46.x  |-  X  =  ( ( ( F `
 R )  .\/  S )  ./\  W )
Assertion
Ref Expression
cdlemeg46rgv  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( ( G `  S
)  .\/  X )
)
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    R, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    S, s, t, x, y, z    a, b, c, u, v, A    B, a, b, c, u, v    v, D    G, s, t, x, y, z    H, a, b, c, u, v    .\/ , a, b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a, b, c, u, v    N, a, b, c    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    R, a, b, c, u, v    S, a, b, c, u, v    V, a, b, c    W, a, b, c, u, v   
x, u, y, z, N    x, O, y, z    v, t    u, V    x, v, y, z, V    D, a, b, c    E, a, b, c    F, a, b, c, u, v   
t, N    U, a,
b, c, v    t, V    s, a, t, b, c    Y, s, t, x, z
Allowed substitution hints:    D( u, t)    U( u)    E( v, u, t, s)    F( x, y, z, t, s)    G( v, u, a, b, c)    N( v, s)    O( v, u, t, s)    V( s)    X( x, y, z, v, u, t, s, a, b, c)    Y( y, v, u, a, b, c)

Proof of Theorem cdlemeg46rgv
StepHypRef Expression
1 cdlemef46g.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemef46g.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemef46g.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemef46g.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdlemef46g.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemef46g.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemef46g.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef46g.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdlemefs46g.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdlemef46g.f . . . 4  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
11 cdlemef46.v . . . 4  |-  V  =  ( ( Q  .\/  P )  ./\  W )
12 cdlemef46.n . . . 4  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
13 cdlemefs46.o . . . 4  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
14 cdlemef46.g . . . 4  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
15 cdlemeg46.y . . . 4  |-  Y  =  ( ( R  .\/  ( G `  S ) )  ./\  W )
16 cdlemeg46.x . . . 4  |-  X  =  ( ( ( F `
 R )  .\/  S )  ./\  W )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdlemeg46vrg 34490 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  X  .<_  ( R  .\/  ( G `
 S ) ) )
18 simp11l 1099 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
19 simp11 1018 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
20 simp1 988 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
21 simp22 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
221, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme46fvaw 34464 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( F `  R )  e.  A  /\  -.  ( F `  R )  .<_  W ) )
2320, 21, 22syl2anc 661 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( F `  R )  e.  A  /\  -.  ( F `  R )  .<_  W ) )
24 simp23l 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
25 simp21 1021 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
26 simp3l 1016 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
271, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme46fsvlpq 34468 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  .<_  ( P 
.\/  Q ) )
2820, 25, 21, 26, 27syl121anc 1224 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( F `  R )  .<_  ( P 
.\/  Q ) )
29 simp3r 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
30 nbrne2 4413 . . . . . 6  |-  ( ( ( F `  R
)  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F `  R )  =/=  S )
3128, 29, 30syl2anc 661 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( F `  R )  =/=  S
)
322, 3, 4, 5, 6, 16lhpat2 34008 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 R )  e.  A  /\  -.  ( F `  R )  .<_  W )  /\  ( S  e.  A  /\  ( F `  R )  =/=  S ) )  ->  X  e.  A
)
3319, 23, 24, 31, 32syl112anc 1223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  X  e.  A )
34 simp22l 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
35 simp23 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemeg46fvaw 34479 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  P  =/=  Q
)  ->  ( ( G `  S )  e.  A  /\  -.  ( G `  S )  .<_  W ) )
3720, 35, 25, 36syl3anc 1219 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( G `  S )  e.  A  /\  -.  ( G `  S )  .<_  W ) )
3837simpld 459 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  S )  e.  A
)
39 hllat 33327 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
4018, 39syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
4123simpld 459 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( F `  R )  e.  A
)
421, 3, 5hlatjcl 33330 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( F `  R )  e.  A  /\  S  e.  A )  ->  (
( F `  R
)  .\/  S )  e.  B )
4318, 41, 24, 42syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( F `  R )  .\/  S )  e.  B
)
44 simp11r 1100 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
451, 6lhpbase 33961 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  B )
4644, 45syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  B )
471, 2, 4latmle2 15361 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( F `  R )  .\/  S
)  e.  B  /\  W  e.  B )  ->  ( ( ( F `
 R )  .\/  S )  ./\  W )  .<_  W )
4840, 43, 46, 47syl3anc 1219 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( (
( F `  R
)  .\/  S )  ./\  W )  .<_  W )
4916, 48syl5eqbr 4428 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  X  .<_  W )
5037simprd 463 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  ( G `  S )  .<_  W )
51 nbrne2 4413 . . . . 5  |-  ( ( X  .<_  W  /\  -.  ( G `  S
)  .<_  W )  ->  X  =/=  ( G `  S ) )
5249, 50, 51syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  X  =/=  ( G `  S ) )
532, 3, 5hlatexch2 33359 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  A  /\  R  e.  A  /\  ( G `  S
)  e.  A )  /\  X  =/=  ( G `  S )
)  ->  ( X  .<_  ( R  .\/  ( G `  S )
)  ->  R  .<_  ( X  .\/  ( G `
 S ) ) ) )
5418, 33, 34, 38, 52, 53syl131anc 1232 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( X  .<_  ( R  .\/  ( G `  S )
)  ->  R  .<_  ( X  .\/  ( G `
 S ) ) ) )
5517, 54mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( X  .\/  ( G `
 S ) ) )
563, 5hlatjcom 33331 . . 3  |-  ( ( K  e.  HL  /\  X  e.  A  /\  ( G `  S )  e.  A )  -> 
( X  .\/  ( G `  S )
)  =  ( ( G `  S ) 
.\/  X ) )
5718, 33, 38, 56syl3anc 1219 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( X  .\/  ( G `  S
) )  =  ( ( G `  S
)  .\/  X )
)
5855, 57breqtrd 4419 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( ( G `  S
)  .\/  X )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   A.wral 2796   [_csb 3390   ifcif 3894   class class class wbr 4395    |-> cmpt 4453   ` cfv 5521   iota_crio 6155  (class class class)co 6195   Basecbs 14287   lecple 14359   joincjn 15228   meetcmee 15229   Latclat 15329   Atomscatm 33227   HLchlt 33314   LHypclh 33947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-riotaBAD 32923
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-undef 6897  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-p1 15324  df-lat 15330  df-clat 15392  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461  df-lplanes 33462  df-lvols 33463  df-lines 33464  df-psubsp 33466  df-pmap 33467  df-padd 33759  df-lhyp 33951
This theorem is referenced by:  cdlemeg46req  34492
  Copyright terms: Public domain W3C validator