Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46gfre Structured version   Unicode version

Theorem cdlemeg46gfre 33811
Description: TODO FIX COMMENT p. 116 penultimate line: g(f(r)) = r. (Contributed by NM, 4-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46g.b  |-  B  =  ( Base `  K
)
cdlemef46g.l  |-  .<_  =  ( le `  K )
cdlemef46g.j  |-  .\/  =  ( join `  K )
cdlemef46g.m  |-  ./\  =  ( meet `  K )
cdlemef46g.a  |-  A  =  ( Atoms `  K )
cdlemef46g.h  |-  H  =  ( LHyp `  K
)
cdlemef46g.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46g.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46g.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46g.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdlemef46.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef46.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs46.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef46.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
Assertion
Ref Expression
cdlemeg46gfre  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( G `  ( F `  R
) )  =  R )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    R, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    a, b, c, u, v, A    B, a, b, c, u, v   
v, D    G, s,
t, x, y, z    H, a, b, c, u, v    .\/ , a, b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a, b, c, u, v    N, a, b, c    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    R, a, b, c, u, v    V, a, b, c    W, a, b, c, u, v, x, y, z    u, N, x, y, z    x, O, y, z    v, t   
u, V    x, v,
y, z, V    D, a, b, c    E, a, b, c    F, a, b, c, u, v   
t, N    U, a,
b, c, v    t, V    s, a, t, b, c, x, y, z, u, v
Allowed substitution hints:    D( u, t)    U( u)    E( v, u, t, s)    F( x, y, z, t, s)    G( v, u, a, b, c)    N( v, s)    O( v, u, t, s)    V( s)

Proof of Theorem cdlemeg46gfre
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 simp11 1035 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1036 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1037 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp2l 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  P  =/=  Q )
5 cdlemef46g.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemef46g.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemef46g.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemef46g.h . . . 4  |-  H  =  ( LHyp `  K
)
95, 6, 7, 8cdlemb2 33318 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. e  e.  A  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q ) ) )
101, 2, 3, 4, 9syl121anc 1269 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  E. e  e.  A  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q ) ) )
11 simp1 1005 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
12 simp2l 1031 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  P  =/=  Q
)
13 simp2r 1032 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
14 simp32 1042 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  e  e.  A
)
15 simp33l 1132 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  -.  e  .<_  W )
1614, 15jca 534 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  ( e  e.  A  /\  -.  e  .<_  W ) )
17 simp31 1041 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  R  .<_  ( P 
.\/  Q ) )
18 simp33r 1133 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  -.  e  .<_  ( P  .\/  Q ) )
19 cdlemef46g.b . . . . . . . 8  |-  B  =  ( Base `  K
)
20 cdlemef46g.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
21 cdlemef46g.u . . . . . . . 8  |-  U  =  ( ( P  .\/  Q )  ./\  W )
22 cdlemef46g.d . . . . . . . 8  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
23 cdlemefs46g.e . . . . . . . 8  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
24 cdlemef46g.f . . . . . . . 8  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
25 cdlemef46.v . . . . . . . 8  |-  V  =  ( ( Q  .\/  P )  ./\  W )
26 cdlemef46.n . . . . . . . 8  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
27 cdlemefs46.o . . . . . . . 8  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
28 cdlemef46.g . . . . . . . 8  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
2919, 5, 6, 20, 7, 8, 21, 22, 23, 24, 25, 26, 27, 28cdlemeg46gfr 33810 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( e  e.  A  /\  -.  e  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  e  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  ( F `  R
) )  =  R )
3011, 12, 13, 16, 17, 18, 29syl132anc 1282 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( R 
.<_  ( P  .\/  Q
)  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q
) ) ) )  ->  ( G `  ( F `  R ) )  =  R )
31303expia 1207 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
( R  .<_  ( P 
.\/  Q )  /\  e  e.  A  /\  ( -.  e  .<_  W  /\  -.  e  .<_  ( P  .\/  Q ) ) )  ->  ( G `  ( F `  R ) )  =  R ) )
32313expd 1222 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .<_  ( P  .\/  Q )  ->  ( e  e.  A  ->  ( ( -.  e  .<_  W  /\  -.  e  .<_  ( P 
.\/  Q ) )  ->  ( G `  ( F `  R ) )  =  R ) ) ) )
33323impia 1202 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( e  e.  A  ->  ( ( -.  e  .<_  W  /\  -.  e  .<_  ( P 
.\/  Q ) )  ->  ( G `  ( F `  R ) )  =  R ) ) )
3433rexlimdv 2922 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( E. e  e.  A  ( -.  e  .<_  W  /\  -.  e  .<_  ( P 
.\/  Q ) )  ->  ( G `  ( F `  R ) )  =  R ) )
3510, 34mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( G `  ( F `  R
) )  =  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   [_csb 3401   ifcif 3915   class class class wbr 4426    |-> cmpt 4484   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15084   lecple 15159   joincjn 16140   meetcmee 16141   Atomscatm 32541   HLchlt 32628   LHypclh 33261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-riotaBAD 32237
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7028  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32454  df-ol 32456  df-oml 32457  df-covers 32544  df-ats 32545  df-atl 32576  df-cvlat 32600  df-hlat 32629  df-llines 32775  df-lplanes 32776  df-lvols 32777  df-lines 32778  df-psubsp 32780  df-pmap 32781  df-padd 33073  df-lhyp 33265
This theorem is referenced by:  cdlemeg46gf  33812
  Copyright terms: Public domain W3C validator