Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs32sn1aw Structured version   Visualization version   Unicode version

Theorem cdlemefs32sn1aw 34052
Description: Show that  [_ R  /  s ]_ N is an atom not under  W when  R  .<_  ( P 
.\/  Q ). (Contributed by NM, 24-Mar-2013.)
Hypotheses
Ref Expression
cdlemefs32.b  |-  B  =  ( Base `  K
)
cdlemefs32.l  |-  .<_  =  ( le `  K )
cdlemefs32.j  |-  .\/  =  ( join `  K )
cdlemefs32.m  |-  ./\  =  ( meet `  K )
cdlemefs32.a  |-  A  =  ( Atoms `  K )
cdlemefs32.h  |-  H  =  ( LHyp `  K
)
cdlemefs32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefs32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemefs32.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdlemefs32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdlemefs32a1.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdlemefs32a1.z  |-  Z  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
Assertion
Ref Expression
cdlemefs32sn1aw  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
Distinct variable groups:    t, s,
y, A    B, s,
t, y    y, D    y, E    H, s, t, y    .\/ , s, t, y    K, s, t, y    .<_ , s, t, y    ./\ , s, t, y    P, s, t, y    Q, s, t, y    R, s, t, y    t, U, y    W, s, t, y   
y, Y    D, s
Allowed substitution hints:    C( y, t, s)    D( t)    U( s)    E( t, s)    I( y, t, s)    N( y, t, s)    Y( t, s)    Z( y, t, s)

Proof of Theorem cdlemefs32sn1aw
StepHypRef Expression
1 cdlemefs32.b . . . 4  |-  B  =  ( Base `  K
)
2 fvex 5889 . . . 4  |-  ( Base `  K )  e.  _V
31, 2eqeltri 2545 . . 3  |-  B  e. 
_V
4 nfv 1769 . . . 4  |-  F/ t ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )
5 cdlemefs32a1.z . . . . . . . 8  |-  Z  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
6 nfra1 2785 . . . . . . . . 9  |-  F/ t A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y )
7 nfcv 2612 . . . . . . . . 9  |-  F/_ t B
86, 7nfriota 6279 . . . . . . . 8  |-  F/_ t
( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
95, 8nfcxfr 2610 . . . . . . 7  |-  F/_ t Z
109nfel1 2626 . . . . . 6  |-  F/ t  Z  e.  A
11 nfcv 2612 . . . . . . . 8  |-  F/_ t  .<_
12 nfcv 2612 . . . . . . . 8  |-  F/_ t W
139, 11, 12nfbr 4440 . . . . . . 7  |-  F/ t  Z  .<_  W
1413nfn 2003 . . . . . 6  |-  F/ t  -.  Z  .<_  W
1510, 14nfan 2031 . . . . 5  |-  F/ t ( Z  e.  A  /\  -.  Z  .<_  W )
1615a1i 11 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  F/ t
( Z  e.  A  /\  -.  Z  .<_  W ) )
175a1i 11 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  Z  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) ) )
18 eleq1 2537 . . . . . 6  |-  ( Y  =  Z  ->  ( Y  e.  A  <->  Z  e.  A ) )
19 breq1 4398 . . . . . . 7  |-  ( Y  =  Z  ->  ( Y  .<_  W  <->  Z  .<_  W ) )
2019notbid 301 . . . . . 6  |-  ( Y  =  Z  ->  ( -.  Y  .<_  W  <->  -.  Z  .<_  W ) )
2118, 20anbi12d 725 . . . . 5  |-  ( Y  =  Z  ->  (
( Y  e.  A  /\  -.  Y  .<_  W )  <-> 
( Z  e.  A  /\  -.  Z  .<_  W ) ) )
2221adantl 473 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  Y  =  Z )  ->  (
( Y  e.  A  /\  -.  Y  .<_  W )  <-> 
( Z  e.  A  /\  -.  Z  .<_  W ) ) )
23 simpl1 1033 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
24 simpl2r 1084 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
25 simprl 772 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  t  e.  A )
26 simprrl 782 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  t  .<_  W )
2725, 26jca 541 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
28 simpl2l 1083 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
29 simpl3 1035 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  R  .<_  ( P  .\/  Q
) )
30 simprrr 783 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  t  .<_  ( P  .\/  Q ) )
31 cdlemefs32.l . . . . . . . 8  |-  .<_  =  ( le `  K )
32 cdlemefs32.j . . . . . . . 8  |-  .\/  =  ( join `  K )
33 cdlemefs32.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
34 cdlemefs32.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
35 cdlemefs32.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
36 cdlemefs32.u . . . . . . . 8  |-  U  =  ( ( P  .\/  Q )  ./\  W )
37 cdlemefs32.d . . . . . . . 8  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
38 cdlemefs32a1.y . . . . . . . 8  |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
3931, 32, 33, 34, 35, 36, 37, 38cdleme7ga 33885 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  t  .<_  ( P  .\/  Q
) ) )  ->  Y  e.  A )
4031, 32, 33, 34, 35, 36, 37, 38cdleme7 33886 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  t  .<_  ( P  .\/  Q
) ) )  ->  -.  Y  .<_  W )
4139, 40jca 541 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  t  .<_  ( P  .\/  Q
) ) )  -> 
( Y  e.  A  /\  -.  Y  .<_  W ) )
4223, 24, 27, 28, 29, 30, 41syl123anc 1309 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( Y  e.  A  /\  -.  Y  .<_  W ) )
4342ex 441 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( (
t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  ( Y  e.  A  /\  -.  Y  .<_  W ) ) )
44 simp1 1030 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
45 simp2rl 1099 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  R  e.  A )
46 simp2rr 1100 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  -.  R  .<_  W )
47 simp2l 1056 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  P  =/=  Q )
48 simp3 1032 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  R  .<_  ( P  .\/  Q ) )
491, 31, 32, 33, 34, 35, 36, 37, 38, 5cdleme25cl 33995 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  Z  e.  B )
5044, 45, 46, 47, 48, 49syl122anc 1301 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  Z  e.  B )
51 simp11 1060 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
52 simp12 1061 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
53 simp13 1062 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5431, 32, 34, 35cdlemb2 33677 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. t  e.  A  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )
5551, 52, 53, 47, 54syl121anc 1297 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  E. t  e.  A  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )
564, 16, 17, 22, 43, 50, 55riotasv3d 32596 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  B  e. 
_V )  ->  ( Z  e.  A  /\  -.  Z  .<_  W ) )
573, 56mpan2 685 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( Z  e.  A  /\  -.  Z  .<_  W ) )
58 cdlemefs32.e . . . . . 6  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
59 cdlemefs32.i . . . . . 6  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
60 cdlemefs32.n . . . . . 6  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
6158, 59, 60, 38, 5cdleme31sn1c 34026 . . . . 5  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  Z )
6245, 48, 61syl2anc 673 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ N  =  Z )
6362eleq1d 2533 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  <->  Z  e.  A
) )
6462breq1d 4405 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  .<_  W  <->  Z  .<_  W ) )
6564notbid 301 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( -.  [_ R  /  s ]_ N  .<_  W  <->  -.  Z  .<_  W ) )
6663, 65anbi12d 725 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W )  <-> 
( Z  e.  A  /\  -.  Z  .<_  W ) ) )
6757, 66mpbird 240 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   F/wnf 1675    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031   [_csb 3349   ifcif 3872   class class class wbr 4395   ` cfv 5589   iota_crio 6269  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   Atomscatm 32900   HLchlt 32987   LHypclh 33620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-riotaBAD 32589
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-undef 7038  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-llines 33134  df-lplanes 33135  df-lvols 33136  df-lines 33137  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624
This theorem is referenced by:  cdlemefs32snb  34053  cdleme32sn1awN  34070  cdleme32snaw  34073
  Copyright terms: Public domain W3C validator