Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs29pre00N Structured version   Visualization version   Unicode version

Theorem cdlemefs29pre00N 34050
Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 33666. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefs29.b  |-  B  =  ( Base `  K
)
cdlemefs29.l  |-  .<_  =  ( le `  K )
cdlemefs29.j  |-  .\/  =  ( join `  K )
cdlemefs29.m  |-  ./\  =  ( meet `  K )
cdlemefs29.a  |-  A  =  ( Atoms `  K )
cdlemefs29.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemefs29pre00N  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P 
.\/  Q ) )  /\  s  e.  A
)  ->  ( (
( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <-> 
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )

Proof of Theorem cdlemefs29pre00N
StepHypRef Expression
1 cdlemefs29.b . 2  |-  B  =  ( Base `  K
)
2 cdlemefs29.l . 2  |-  .<_  =  ( le `  K )
3 cdlemefs29.j . 2  |-  .\/  =  ( join `  K )
4 cdlemefs29.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemefs29.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemefs29.h . 2  |-  H  =  ( LHyp `  K
)
7 breq1 4398 . 2  |-  ( s  =  R  ->  (
s  .<_  ( P  .\/  Q )  <->  R  .<_  ( P 
.\/  Q ) ) )
81, 2, 3, 4, 5, 6, 7cdlemefrs29pre00 34033 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  R  .<_  ( P 
.\/  Q ) )  /\  s  e.  A
)  ->  ( (
( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <-> 
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   Atomscatm 32900   HLchlt 32987   LHypclh 33620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-lat 16370  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-lhyp 33624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator