Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs27cl Structured version   Visualization version   Unicode version

Theorem cdlemefs27cl 34051
Description: Part of proof of Lemma E in [Crawley] p. 113. Closure of  N. TODO FIX COMMENT This is the start of a re-proof of cdleme27cl 34004 etc. with the  s  .<_  ( P 
.\/  Q ) condition (so as to not have the  C hypothesis). (Contributed by NM, 24-Mar-2013.)
Hypotheses
Ref Expression
cdlemefs26.b  |-  B  =  ( Base `  K
)
cdlemefs26.l  |-  .<_  =  ( le `  K )
cdlemefs26.j  |-  .\/  =  ( join `  K )
cdlemefs26.m  |-  ./\  =  ( meet `  K )
cdlemefs26.a  |-  A  =  ( Atoms `  K )
cdlemefs26.h  |-  H  =  ( LHyp `  K
)
cdlemefs27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefs27.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs27.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemefs27.i  |-  I  =  ( iota_ u  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  E ) )
cdlemefs27.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
Assertion
Ref Expression
cdlemefs27cl  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  N  e.  B )
Distinct variable groups:    u, t, A    t, B, u    u, E    t, H    t,  .\/ , u   
t, K    t,  .<_ , u   
t,  ./\ , u    t, P, u    t, Q, u    t, U, u    t, W, u   
t, s, u
Allowed substitution hints:    A( s)    B( s)    C( u, t, s)    D( u, t, s)    P( s)    Q( s)    U( s)    E( t, s)    H( u, s)    I( u, t, s)    .\/ ( s)    K( u, s)    .<_ ( s)    ./\ ( s)    N( u, t, s)    W( s)

Proof of Theorem cdlemefs27cl
StepHypRef Expression
1 cdlemefs27.n . 2  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
2 simpr2 1037 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  s  .<_  ( P  .\/  Q
) )
32iftrued 3880 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  if ( s  .<_  ( P 
.\/  Q ) ,  I ,  C )  =  I )
4 simpl1 1033 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simpl2 1034 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 simpl3 1035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
7 simpr1 1036 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
8 simpr3 1038 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  P  =/=  Q )
9 cdlemefs26.b . . . . 5  |-  B  =  ( Base `  K
)
10 cdlemefs26.l . . . . 5  |-  .<_  =  ( le `  K )
11 cdlemefs26.j . . . . 5  |-  .\/  =  ( join `  K )
12 cdlemefs26.m . . . . 5  |-  ./\  =  ( meet `  K )
13 cdlemefs26.a . . . . 5  |-  A  =  ( Atoms `  K )
14 cdlemefs26.h . . . . 5  |-  H  =  ( LHyp `  K
)
15 cdlemefs27.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
16 cdlemefs27.d . . . . 5  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
17 cdlemefs27.e . . . . 5  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
18 cdlemefs27.i . . . . 5  |-  I  =  ( iota_ u  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  E ) )
199, 10, 11, 12, 13, 14, 15, 16, 17, 18cdleme25cl 33995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( P  =/= 
Q  /\  s  .<_  ( P  .\/  Q ) ) )  ->  I  e.  B )
204, 5, 6, 7, 8, 2, 19syl312anc 1313 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  I  e.  B )
213, 20eqeltrd 2549 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  if ( s  .<_  ( P 
.\/  Q ) ,  I ,  C )  e.  B )
221, 21syl5eqel 2553 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  N  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   ifcif 3872   class class class wbr 4395   ` cfv 5589   iota_crio 6269  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   Atomscatm 32900   HLchlt 32987   LHypclh 33620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-llines 33134  df-lplanes 33135  df-lvols 33136  df-lines 33137  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624
This theorem is referenced by:  cdlemefs29bpre0N  34054  cdlemefs29bpre1N  34055  cdlemefs29cpre1N  34056  cdlemefs29clN  34057  cdlemefs32fvaN  34060  cdlemefs32fva1  34061
  Copyright terms: Public domain W3C validator