Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs32fva1 Structured version   Unicode version

Theorem cdlemefrs32fva1 33937
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b  |-  B  =  ( Base `  K
)
cdlemefrs27.l  |-  .<_  =  ( le `  K )
cdlemefrs27.j  |-  .\/  =  ( join `  K )
cdlemefrs27.m  |-  ./\  =  ( meet `  K )
cdlemefrs27.a  |-  A  =  ( Atoms `  K )
cdlemefrs27.h  |-  H  =  ( LHyp `  K
)
cdlemefrs27.eq  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
cdlemefrs27.nb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
cdlemefrs27.rnb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
cdleme29frs.o  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme29frs.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdlemefrs32fva1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( F `  R
)  =  [_ R  /  s ]_ N
)
Distinct variable groups:    z, s, A    H, s    .\/ , s    K, s    .<_ , s    P, s    Q, s    R, s    W, s    ps, s    z, A    z, B    z, H    z, K    z, 
.<_    z, N    z, P    z, Q    z, R    z, W    ps, z    B, s   
z,  .\/    ./\ , s, z    ph, z    x, z, A   
x, B    x,  .\/    x, 
.<_    x,  ./\    x, N    x, s, R    x, W    x, P    x, Q
Allowed substitution hints:    ph( x, s)    ps( x)    F( x, z, s)    H( x)    K( x)    N( s)    O( x, z, s)

Proof of Theorem cdlemefrs32fva1
StepHypRef Expression
1 simp2rl 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  R  e.  A )
2 cdlemefrs27.b . . . . 5  |-  B  =  ( Base `  K
)
3 cdlemefrs27.a . . . . 5  |-  A  =  ( Atoms `  K )
42, 3atbase 32824 . . . 4  |-  ( R  e.  A  ->  R  e.  B )
51, 4syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  R  e.  B )
6 simp2l 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  P  =/=  Q )
7 simp2rr 1075 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  -.  R  .<_  W )
8 cdleme29frs.o . . . 4  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
9 cdleme29frs.f . . . 4  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
108, 9cdleme31fv1s 33928 . . 3  |-  ( ( R  e.  B  /\  ( P  =/=  Q  /\  -.  R  .<_  W ) )  ->  ( F `  R )  =  [_ R  /  x ]_ O
)
115, 6, 7, 10syl12anc 1262 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( F `  R
)  =  [_ R  /  x ]_ O )
12 cdlemefrs27.l . . 3  |-  .<_  =  ( le `  K )
13 cdlemefrs27.j . . 3  |-  .\/  =  ( join `  K )
14 cdlemefrs27.m . . 3  |-  ./\  =  ( meet `  K )
15 cdlemefrs27.h . . 3  |-  H  =  ( LHyp `  K
)
16 cdlemefrs27.eq . . 3  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
17 cdlemefrs27.nb . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
18 cdlemefrs27.rnb . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
192, 12, 13, 14, 3, 15, 16, 17, 18, 8cdlemefrs32fva 33936 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
2011, 19eqtrd 2463 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( F `  R
)  =  [_ R  /  s ]_ N
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   [_csb 3395   ifcif 3911   class class class wbr 4423    |-> cmpt 4482   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15120   lecple 15196   joincjn 16188   meetcmee 16189   Atomscatm 32798   HLchlt 32885   LHypclh 33518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-lhyp 33522
This theorem is referenced by:  cdlemefr32fva1  33946  cdlemefs32fva1  33959
  Copyright terms: Public domain W3C validator