Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29bpre0 Structured version   Visualization version   Unicode version

Theorem cdlemefrs29bpre0 34034
Description: TODO fix comment. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b  |-  B  =  ( Base `  K
)
cdlemefrs27.l  |-  .<_  =  ( le `  K )
cdlemefrs27.j  |-  .\/  =  ( join `  K )
cdlemefrs27.m  |-  ./\  =  ( meet `  K )
cdlemefrs27.a  |-  A  =  ( Atoms `  K )
cdlemefrs27.h  |-  H  =  ( LHyp `  K
)
cdlemefrs27.eq  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
cdlemefrs27.nb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
Assertion
Ref Expression
cdlemefrs29bpre0  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N
) )
Distinct variable groups:    z, s    A, s    H, s    .\/ , s    K, s    .<_ , s    P, s    Q, s    R, s    W, s    ps, s
Allowed substitution hints:    ph( z, s)    ps( z)    A( z)    B( z, s)    P( z)    Q( z)    R( z)    H( z)    .\/ ( z)    K( z)    .<_ ( z)    ./\ ( z,
s)    N( z, s)    W( z)

Proof of Theorem cdlemefrs29bpre0
StepHypRef Expression
1 df-ral 2761 . . 3  |-  ( A. s  e.  A  (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  A. s
( s  e.  A  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
2 anass 661 . . . . . . 7  |-  ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <-> 
( s  e.  A  /\  ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
32imbi1i 332 . . . . . 6  |-  ( ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  (
s  .\/  ( R  ./\ 
W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) )  <->  ( (
s  e.  A  /\  ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
4 impexp 453 . . . . . 6  |-  ( ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  (
s  .\/  ( R  ./\ 
W ) )  =  R )  ->  z  =  ( N  .\/  ( R  ./\  W ) ) )  <->  ( (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  ( ( s 
.\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
5 impexp 453 . . . . . 6  |-  ( ( ( s  e.  A  /\  ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  ( s  e.  A  ->  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
63, 4, 53bitr3ri 284 . . . . 5  |-  ( ( s  e.  A  -> 
( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  <->  ( (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  ( ( s 
.\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
7 simpl11 1105 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simpl2r 1084 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
9 cdlemefrs27.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
10 cdlemefrs27.m . . . . . . . . . . . . 13  |-  ./\  =  ( meet `  K )
11 eqid 2471 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
12 cdlemefrs27.a . . . . . . . . . . . . 13  |-  A  =  ( Atoms `  K )
13 cdlemefrs27.h . . . . . . . . . . . . 13  |-  H  =  ( LHyp `  K
)
149, 10, 11, 12, 13lhpmat 33666 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
157, 8, 14syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( R  ./\ 
W )  =  ( 0. `  K ) )
1615oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( s  .\/  ( R  ./\  W
) )  =  ( s  .\/  ( 0.
`  K ) ) )
17 simp11l 1141 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  K  e.  HL )
18 hlol 32998 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  OL )
1917, 18syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  K  e.  OL )
2019adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  K  e.  OL )
21 simprl 772 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  s  e.  A )
22 cdlemefrs27.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  K
)
2322, 12atbase 32926 . . . . . . . . . . . 12  |-  ( s  e.  A  ->  s  e.  B )
2421, 23syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  s  e.  B )
25 cdlemefrs27.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
2622, 25, 11olj01 32862 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  s  e.  B )  ->  ( s  .\/  ( 0. `  K ) )  =  s )
2720, 24, 26syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( s  .\/  ( 0. `  K
) )  =  s )
2816, 27eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( s  .\/  ( R  ./\  W
) )  =  s )
2928eqeq1d 2473 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( (
s  .\/  ( R  ./\ 
W ) )  =  R  <->  s  =  R ) )
3015oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( N  .\/  ( R  ./\  W
) )  =  ( N  .\/  ( 0.
`  K ) ) )
31 simpl1 1033 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
32 simpl2l 1083 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  P  =/=  Q )
33 simprr 774 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( -.  s  .<_  W  /\  ph ) )
34 cdlemefrs27.nb . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
3531, 32, 21, 33, 34syl112anc 1296 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
3622, 25, 11olj01 32862 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  N  e.  B )  ->  ( N  .\/  ( 0. `  K ) )  =  N )
3720, 35, 36syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( N  .\/  ( 0. `  K
) )  =  N )
3830, 37eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( N  .\/  ( R  ./\  W
) )  =  N )
3938eqeq2d 2481 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( z  =  ( N  .\/  ( R  ./\  W ) )  <->  z  =  N ) )
4029, 39imbi12d 327 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  ( (
( s  .\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R  ./\  W ) ) )  <->  ( s  =  R  ->  z  =  N ) ) )
4140pm5.74da 701 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  (
( s  .\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )  <->  ( (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  ( s  =  R  ->  z  =  N ) ) ) )
42 impexp 453 . . . . . . 7  |-  ( ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  s  =  R )  ->  z  =  N )  <->  ( (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  ( s  =  R  ->  z  =  N ) ) )
43 eqcom 2478 . . . . . . . . 9  |-  ( z  =  N  <->  N  =  z )
4443imbi2i 319 . . . . . . . 8  |-  ( ( s  =  R  -> 
z  =  N )  <-> 
( s  =  R  ->  N  =  z ) )
45 simp2rl 1099 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  R  e.  A )
46 simp2rr 1100 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  -.  R  .<_  W )
47 simp3 1032 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ps )
48 eleq1 2537 . . . . . . . . . . . . 13  |-  ( s  =  R  ->  (
s  e.  A  <->  R  e.  A ) )
49 breq1 4398 . . . . . . . . . . . . . . 15  |-  ( s  =  R  ->  (
s  .<_  W  <->  R  .<_  W ) )
5049notbid 301 . . . . . . . . . . . . . 14  |-  ( s  =  R  ->  ( -.  s  .<_  W  <->  -.  R  .<_  W ) )
51 cdlemefrs27.eq . . . . . . . . . . . . . 14  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
5250, 51anbi12d 725 . . . . . . . . . . . . 13  |-  ( s  =  R  ->  (
( -.  s  .<_  W  /\  ph )  <->  ( -.  R  .<_  W  /\  ps ) ) )
5348, 52anbi12d 725 . . . . . . . . . . . 12  |-  ( s  =  R  ->  (
( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  <-> 
( R  e.  A  /\  ( -.  R  .<_  W  /\  ps ) ) ) )
5453biimprcd 233 . . . . . . . . . . 11  |-  ( ( R  e.  A  /\  ( -.  R  .<_  W  /\  ps ) )  ->  ( s  =  R  ->  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) ) )
5545, 46, 47, 54syl12anc 1290 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( s  =  R  ->  ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) ) )
5655pm4.71rd 647 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( s  =  R  <-> 
( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  s  =  R ) ) )
5756imbi1d 324 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( ( s  =  R  ->  z  =  N )  <->  ( (
( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  s  =  R )  ->  z  =  N ) ) )
5844, 57syl5rbbr 268 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  /\  s  =  R )  ->  z  =  N )  <->  ( s  =  R  ->  N  =  z ) ) )
5942, 58syl5bbr 267 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  (
s  =  R  -> 
z  =  N ) )  <->  ( s  =  R  ->  N  =  z ) ) )
6041, 59bitrd 261 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( ( ( s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) )  ->  (
( s  .\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R  ./\  W ) ) ) )  <->  ( s  =  R  ->  N  =  z ) ) )
616, 60syl5bb 265 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( ( s  e.  A  ->  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  <-> 
( s  =  R  ->  N  =  z ) ) )
6261albidv 1775 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s ( s  e.  A  -> 
( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  <->  A. s
( s  =  R  ->  N  =  z ) ) )
631, 62syl5bb 265 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  A. s ( s  =  R  ->  N  =  z ) ) )
64 nfcv 2612 . . . . 5  |-  F/_ s
z
6564csbiebg 3372 . . . 4  |-  ( R  e.  A  ->  ( A. s ( s  =  R  ->  N  =  z )  <->  [_ R  / 
s ]_ N  =  z ) )
6645, 65syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s ( s  =  R  ->  N  =  z )  <->  [_ R  /  s ]_ N  =  z )
)
67 eqcom 2478 . . 3  |-  ( [_ R  /  s ]_ N  =  z  <->  z  =  [_ R  /  s ]_ N
)
6866, 67syl6bb 269 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s ( s  =  R  ->  N  =  z )  <->  z  =  [_ R  / 
s ]_ N ) )
6963, 68bitrd 261 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   [_csb 3349   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   0.cp0 16361   OLcol 32811   Atomscatm 32900   HLchlt 32987   LHypclh 33620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-lat 16370  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-lhyp 33624
This theorem is referenced by:  cdlemefrs29bpre1  34035  cdlemefrs32fva  34038  cdlemefr29bpre0N  34044  cdlemefs29bpre0N  34054
  Copyright terms: Public domain W3C validator