Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9b Unicode version

Theorem cdleme9b 30734
Description: Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
cdleme9b.b  |-  B  =  ( Base `  K
)
cdleme9b.j  |-  .\/  =  ( join `  K )
cdleme9b.m  |-  ./\  =  ( meet `  K )
cdleme9b.a  |-  A  =  ( Atoms `  K )
cdleme9b.h  |-  H  =  ( LHyp `  K
)
cdleme9b.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme9b  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  C  e.  B )

Proof of Theorem cdleme9b
StepHypRef Expression
1 cdleme9b.c . 2  |-  C  =  ( ( P  .\/  S )  ./\  W )
2 hllat 29846 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
32adantr 452 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  K  e.  Lat )
4 cdleme9b.b . . . . 5  |-  B  =  ( Base `  K
)
5 cdleme9b.j . . . . 5  |-  .\/  =  ( join `  K )
6 cdleme9b.a . . . . 5  |-  A  =  ( Atoms `  K )
74, 5, 6hlatjcl 29849 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  B )
873adant3r3 1164 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  ( P  .\/  S )  e.  B )
9 simpr3 965 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  W  e.  H )
10 cdleme9b.h . . . . 5  |-  H  =  ( LHyp `  K
)
114, 10lhpbase 30480 . . . 4  |-  ( W  e.  H  ->  W  e.  B )
129, 11syl 16 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  W  e.  B )
13 cdleme9b.m . . . 4  |-  ./\  =  ( meet `  K )
144, 13latmcl 14435 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  S
)  ./\  W )  e.  B )
153, 8, 12, 14syl3anc 1184 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  (
( P  .\/  S
)  ./\  W )  e.  B )
161, 15syl5eqel 2488 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  C  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   Basecbs 13424   joincjn 14356   meetcmee 14357   Latclat 14429   Atomscatm 29746   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme15b  30757  cdleme17b  30769
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-lat 14430  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-lhyp 30470
  Copyright terms: Public domain W3C validator