Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9 Structured version   Unicode version

Theorem cdleme9 35049
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  C and  F represent s1 and f(s) respectively. In their notation, we prove f(s)  \/ s1 = q  \/ s1. (Contributed by NM, 10-Jun-2012.)
Hypotheses
Ref Expression
cdleme9.l  |-  .<_  =  ( le `  K )
cdleme9.j  |-  .\/  =  ( join `  K )
cdleme9.m  |-  ./\  =  ( meet `  K )
cdleme9.a  |-  A  =  ( Atoms `  K )
cdleme9.h  |-  H  =  ( LHyp `  K
)
cdleme9.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme9.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme9.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F  .\/  C )  =  ( Q  .\/  C
) )

Proof of Theorem cdleme9
StepHypRef Expression
1 cdleme9.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme9.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme9.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme9.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme9.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme9.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme9.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
8 cdleme9.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 35027 . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  C ) )
109oveq1i 6292 . 2  |-  ( F 
.\/  C )  =  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )
11 simp1l 1020 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  HL )
12 simp1 996 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp21 1029 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp23l 1117 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  A )
15 hllat 34160 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
1611, 15syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  Lat )
17 eqid 2467 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1817, 4atbase 34086 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1914, 18syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  e.  ( Base `  K
) )
20 simp21l 1113 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  A )
2117, 4atbase 34086 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2220, 21syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  e.  ( Base `  K
) )
23 simp22 1030 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  A )
2417, 4atbase 34086 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2523, 24syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  Q  e.  ( Base `  K
) )
26 simp3 998 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  ( P  .\/  Q ) )
2717, 1, 2latnlej1l 15552 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  =/=  P )
2827necomd 2738 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  P  =/=  S )
2916, 19, 22, 25, 26, 28syl131anc 1241 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  S )
301, 2, 3, 4, 5, 8cdleme9a 35047 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A
)
3112, 13, 14, 29, 30syl112anc 1232 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  e.  A )
321, 2, 3, 4, 5, 6, 17cdleme0aa 35006 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  ( Base `  K )
)
3312, 20, 23, 32syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  U  e.  ( Base `  K
) )
3417, 2latjcl 15534 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
3516, 19, 33, 34syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
3617, 2, 4hlatjcl 34163 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  ( Q  .\/  C
)  e.  ( Base `  K ) )
3711, 23, 31, 36syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  C )  e.  ( Base `  K
) )
381, 2, 4hlatlej2 34172 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  C  .<_  ( Q  .\/  C ) )
3911, 23, 31, 38syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  .<_  ( Q  .\/  C
) )
4017, 1, 2, 3, 4atmod4i1 34662 . . . 4  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  ( S  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  C )  e.  ( Base `  K
) )  /\  C  .<_  ( Q  .\/  C
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( ( ( S  .\/  U
)  .\/  C )  ./\  ( Q  .\/  C
) ) )
4111, 31, 35, 37, 39, 40syl131anc 1241 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( ( ( S  .\/  U
)  .\/  C )  ./\  ( Q  .\/  C
) ) )
4217, 2, 4hlatjcl 34163 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
4311, 20, 14, 42syl3anc 1228 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  S )  e.  ( Base `  K
) )
44 simp1r 1021 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  W  e.  H )
4517, 5lhpbase 34794 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4644, 45syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  W  e.  ( Base `  K
) )
471, 2, 4hlatlej2 34172 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  S  .<_  ( P  .\/  S ) )
4811, 20, 14, 47syl3anc 1228 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  .<_  ( P  .\/  S
) )
4917, 1, 2, 3, 4atmod3i1 34660 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( P  .\/  S
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  S  .<_  ( P  .\/  S
) )  ->  ( S  .\/  ( ( P 
.\/  S )  ./\  W ) )  =  ( ( P  .\/  S
)  ./\  ( S  .\/  W ) ) )
5011, 14, 43, 46, 48, 49syl131anc 1241 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  ( ( P 
.\/  S )  ./\  W ) )  =  ( ( P  .\/  S
)  ./\  ( S  .\/  W ) ) )
51 simp23r 1118 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  -.  S  .<_  W )
52 eqid 2467 . . . . . . . . . . 11  |-  ( 1.
`  K )  =  ( 1. `  K
)
531, 2, 52, 4, 5lhpjat2 34817 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  -> 
( S  .\/  W
)  =  ( 1.
`  K ) )
5412, 14, 51, 53syl12anc 1226 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  W )  =  ( 1. `  K
) )
5554oveq2d 6298 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  ( S  .\/  W ) )  =  ( ( P  .\/  S )  ./\  ( 1. `  K ) ) )
56 hlol 34158 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
5711, 56syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  K  e.  OL )
5817, 3, 52olm11 34024 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  (
( P  .\/  S
)  ./\  ( 1. `  K ) )  =  ( P  .\/  S
) )
5957, 43, 58syl2anc 661 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  ( 1. `  K ) )  =  ( P  .\/  S
) )
6050, 55, 593eqtrrd 2513 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  S )  =  ( S  .\/  (
( P  .\/  S
)  ./\  W )
) )
618oveq2i 6293 . . . . . . 7  |-  ( S 
.\/  C )  =  ( S  .\/  (
( P  .\/  S
)  ./\  W )
)
6260, 61syl6reqr 2527 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( S  .\/  C )  =  ( P  .\/  S
) )
6362oveq1d 6297 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  C
)  .\/  U )  =  ( ( P 
.\/  S )  .\/  U ) )
6417, 4atbase 34086 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  ( Base `  K
) )
6531, 64syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  e.  ( Base `  K
) )
6617, 2latj32 15580 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  C  e.  ( Base `  K
) ) )  -> 
( ( S  .\/  U )  .\/  C )  =  ( ( S 
.\/  C )  .\/  U ) )
6716, 19, 33, 65, 66syl13anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  U
)  .\/  C )  =  ( ( S 
.\/  C )  .\/  U ) )
682, 4hlatj32 34168 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  Q  e.  A
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
6911, 20, 14, 23, 68syl13anc 1230 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  .\/  Q )  =  ( ( P 
.\/  Q )  .\/  S ) )
7017, 2latjcom 15542 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  Q )
)
7116, 25, 43, 70syl3anc 1228 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  Q )
)
726oveq2i 6293 . . . . . . . . 9  |-  ( P 
.\/  U )  =  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
)
7317, 2, 4hlatjcl 34163 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
7411, 20, 23, 73syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
751, 2, 4hlatlej1 34171 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
7611, 20, 23, 75syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  .<_  ( P  .\/  Q
) )
7717, 1, 2, 3, 4atmod3i1 34660 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( P  .\/  W ) ) )
7811, 20, 74, 46, 76, 77syl131anc 1241 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  ( P  .\/  W ) ) )
791, 2, 52, 4, 5lhpjat2 34817 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  .\/  W
)  =  ( 1.
`  K ) )
8012, 13, 79syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  W )  =  ( 1. `  K
) )
8180oveq2d 6298 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( P  .\/  W ) )  =  ( ( P  .\/  Q )  ./\  ( 1. `  K ) ) )
8217, 3, 52olm11 34024 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
8357, 74, 82syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  Q
)  ./\  ( 1. `  K ) )  =  ( P  .\/  Q
) )
8478, 81, 833eqtrd 2512 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( P  .\/  Q ) )
8572, 84syl5eq 2520 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( P  .\/  U )  =  ( P  .\/  Q
) )
8685oveq1d 6297 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  U
)  .\/  S )  =  ( ( P 
.\/  Q )  .\/  S ) )
8769, 71, 863eqtr4d 2518 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  U
)  .\/  S )
)
8817, 2latj32 15580 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  U )  .\/  S )  =  ( ( P 
.\/  S )  .\/  U ) )
8916, 22, 33, 19, 88syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  U
)  .\/  S )  =  ( ( P 
.\/  S )  .\/  U ) )
9087, 89eqtrd 2508 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  =  ( ( P  .\/  S
)  .\/  U )
)
9163, 67, 903eqtr4d 2518 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( S  .\/  U
)  .\/  C )  =  ( Q  .\/  ( P  .\/  S ) ) )
9291oveq1d 6297 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  .\/  C ) 
./\  ( Q  .\/  C ) )  =  ( ( Q  .\/  ( P  .\/  S ) ) 
./\  ( Q  .\/  C ) ) )
9317, 1, 3latmle1 15559 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
9416, 43, 46, 93syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( P  .\/  S
)  ./\  W )  .<_  ( P  .\/  S
) )
958, 94syl5eqbr 4480 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  C  .<_  ( P  .\/  S
) )
9617, 1, 2latjlej2 15549 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
) )  ->  ( C  .<_  ( P  .\/  S )  ->  ( Q  .\/  C )  .<_  ( Q 
.\/  ( P  .\/  S ) ) ) )
9716, 65, 43, 25, 96syl13anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( C  .<_  ( P  .\/  S )  ->  ( Q  .\/  C )  .<_  ( Q 
.\/  ( P  .\/  S ) ) ) )
9895, 97mpd 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  C )  .<_  ( Q  .\/  ( P 
.\/  S ) ) )
9917, 2latjcl 15534 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
10016, 25, 43, 99syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
10117, 1, 3latleeqm2 15563 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  C )  e.  ( Base `  K
)  /\  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  C )  .<_  ( Q  .\/  ( P 
.\/  S ) )  <-> 
( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  C ) )  =  ( Q  .\/  C
) ) )
10216, 37, 100, 101syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  C
)  .<_  ( Q  .\/  ( P  .\/  S ) )  <->  ( ( Q 
.\/  ( P  .\/  S ) )  ./\  ( Q  .\/  C ) )  =  ( Q  .\/  C ) ) )
10398, 102mpbid 210 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  ( P  .\/  S ) ) 
./\  ( Q  .\/  C ) )  =  ( Q  .\/  C ) )
10441, 92, 1033eqtrd 2512 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  (
( ( S  .\/  U )  ./\  ( Q  .\/  C ) )  .\/  C )  =  ( Q 
.\/  C ) )
10510, 104syl5eq 2520 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( F  .\/  C )  =  ( Q  .\/  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14486   lecple 14558   joincjn 15427   meetcmee 15428   1.cp1 15521   Latclat 15528   OLcol 33971   Atomscatm 34060   HLchlt 34147   LHypclh 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784
This theorem is referenced by:  cdleme9tN  35053  cdleme17a  35082
  Copyright terms: Public domain W3C validator