Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7e Unicode version

Theorem cdleme7e 30729
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 30730 and cdleme7 30731. (Contributed by NM, 8-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l  |-  .<_  =  ( le `  K )
cdleme4.j  |-  .\/  =  ( join `  K )
cdleme4.m  |-  ./\  =  ( meet `  K )
cdleme4.a  |-  A  =  ( Atoms `  K )
cdleme4.h  |-  H  =  ( LHyp `  K
)
cdleme4.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme4.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme4.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme7.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme7e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  G  =/=  ( 0. `  K ) )

Proof of Theorem cdleme7e
StepHypRef Expression
1 simp11l 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 hllat 29846 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  Lat )
4 simp2ll 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  e.  A )
5 eqid 2404 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme4.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 29772 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
84, 7syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  e.  ( Base `  K ) )
9 hlop 29845 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
10 eqid 2404 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
115, 10op0cl 29667 . . . . . 6  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
121, 9, 113syl 19 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( 0. `  K
)  e.  ( Base `  K ) )
13 cdleme4.j . . . . . 6  |-  .\/  =  ( join `  K )
145, 13latjcl 14434 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  ( 0. `  K )  e.  ( Base `  K
) )  ->  ( R  .\/  ( 0. `  K ) )  e.  ( Base `  K
) )
153, 8, 12, 14syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) )  e.  ( Base `  K
) )
16 cdleme4.g . . . . . 6  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
17 simp12l 1070 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
18 simp13l 1072 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
195, 13, 6hlatjcl 29849 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
201, 17, 18, 19syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
21 simp11 987 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
22 simp2rl 1026 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  e.  A )
23 cdleme4.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
24 cdleme4.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
25 cdleme4.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
26 cdleme4.u . . . . . . . . . 10  |-  U  =  ( ( P  .\/  Q )  ./\  W )
27 cdleme4.f . . . . . . . . . 10  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
2823, 13, 24, 6, 25, 26, 27, 5cdleme1b 30708 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
2921, 17, 18, 22, 28syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  F  e.  ( Base `  K ) )
305, 13, 6hlatjcl 29849 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
311, 4, 22, 30syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
32 simp11r 1069 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  W  e.  H )
335, 25lhpbase 30480 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3432, 33syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  W  e.  ( Base `  K ) )
355, 24latmcl 14435 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  ( Base `  K ) )
363, 31, 34, 35syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  ( Base `  K
) )
375, 13latjcl 14434 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( R  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
383, 29, 36, 37syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( F  .\/  (
( R  .\/  S
)  ./\  W )
)  e.  ( Base `  K ) )
395, 24latmcl 14435 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )  e.  (
Base `  K )
)
403, 20, 38, 39syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )  e.  (
Base `  K )
)
4116, 40syl5eqel 2488 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  G  e.  ( Base `  K ) )
425, 13latjcl 14434 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  G  e.  ( Base `  K
) )  ->  ( R  .\/  G )  e.  ( Base `  K
) )
433, 8, 41, 42syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  G
)  e.  ( Base `  K ) )
445, 23, 24latmle2 14461 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
453, 20, 34, 44syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  W )
4626, 45syl5eqbr 4205 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  U  .<_  W )
47 simp2lr 1025 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  R  .<_  W )
48 nbrne2 4190 . . . . . . . 8  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4948necomd 2650 . . . . . . 7  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  R  =/=  U
)
5046, 47, 49syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  =/=  U )
51 simp12 988 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
52 simp31 993 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
5323, 13, 24, 6, 25, 26lhpat2 30527 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
5421, 51, 18, 52, 53syl112anc 1188 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  U  e.  A )
55 eqid 2404 . . . . . . . 8  |-  (  <o  `  K )  =  ( 
<o  `  K )
5613, 55, 6atcvr1 29899 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
571, 4, 54, 56syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
5850, 57mpbid 202 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R (  <o  `  K
) ( R  .\/  U ) )
59 hlol 29844 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
601, 59syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  OL )
615, 13, 10olj01 29708 . . . . . 6  |-  ( ( K  e.  OL  /\  R  e.  ( Base `  K ) )  -> 
( R  .\/  ( 0. `  K ) )  =  R )
6260, 8, 61syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) )  =  R )
63 simp2l 983 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
64 simp2r 984 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
65 simp32 994 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  .<_  ( P  .\/  Q ) )
6623, 13, 24, 6, 25, 26, 27, 16cdleme5 30722 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  G
)  =  ( P 
.\/  Q ) )
6721, 17, 18, 63, 64, 65, 66syl132anc 1202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  G
)  =  ( P 
.\/  Q ) )
6823, 13, 24, 6, 25, 26cdleme4 30720 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
6921, 17, 18, 63, 65, 68syl131anc 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  =  ( R 
.\/  U ) )
7067, 69eqtrd 2436 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  G
)  =  ( R 
.\/  U ) )
7158, 62, 703brtr4d 4202 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) ) (  <o  `  K )
( R  .\/  G
) )
725, 55cvrne 29764 . . . 4  |-  ( ( ( K  e.  HL  /\  ( R  .\/  ( 0. `  K ) )  e.  ( Base `  K
)  /\  ( R  .\/  G )  e.  (
Base `  K )
)  /\  ( R  .\/  ( 0. `  K
) ) (  <o  `  K ) ( R 
.\/  G ) )  ->  ( R  .\/  ( 0. `  K ) )  =/=  ( R 
.\/  G ) )
731, 15, 43, 71, 72syl31anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  ( 0. `  K ) )  =/=  ( R  .\/  G ) )
74 oveq2 6048 . . . 4  |-  ( ( 0. `  K )  =  G  ->  ( R  .\/  ( 0. `  K ) )  =  ( R  .\/  G
) )
7574necon3i 2606 . . 3  |-  ( ( R  .\/  ( 0.
`  K ) )  =/=  ( R  .\/  G )  ->  ( 0. `  K )  =/=  G
)
7673, 75syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( 0. `  K
)  =/=  G )
7776necomd 2650 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  G  =/=  ( 0. `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   0.cp0 14421   Latclat 14429   OPcops 29655   OLcol 29657    <o ccvr 29745   Atomscatm 29746   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme7ga  30730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470
  Copyright terms: Public domain W3C validator