Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7c Structured version   Unicode version

Theorem cdleme7c 33894
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 33897 and cdleme7 33898. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l  |-  .<_  =  ( le `  K )
cdleme4.j  |-  .\/  =  ( join `  K )
cdleme4.m  |-  ./\  =  ( meet `  K )
cdleme4.a  |-  A  =  ( Atoms `  K )
cdleme4.h  |-  H  =  ( LHyp `  K
)
cdleme4.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme4.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme4.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme7.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme7c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  U  =/=  V )

Proof of Theorem cdleme7c
StepHypRef Expression
1 cdleme4.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 cdleme7.v . . . 4  |-  V  =  ( ( R  .\/  S )  ./\  W )
31, 2oveq12i 6108 . . 3  |-  ( U 
./\  V )  =  ( ( ( P 
.\/  Q )  ./\  W )  ./\  ( ( R  .\/  S )  ./\  W ) )
4 simp11 1018 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp12l 1101 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
6 simp13 1020 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
7 simp2l 1014 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
8 simp32 1025 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
9 cdleme4.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
10 cdleme4.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
11 cdleme4.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
12 cdleme4.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
13 cdleme4.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
149, 10, 11, 12, 13, 1cdleme4 33887 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
154, 5, 6, 7, 8, 14syl131anc 1231 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  U ) )
1615oveq1d 6111 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  ( ( R  .\/  U ) 
./\  ( R  .\/  S ) ) )
17 simp11l 1099 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
18 simp12 1019 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
19 simp31 1024 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
209, 10, 11, 12, 13, 1lhpat2 33694 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
214, 18, 6, 19, 20syl112anc 1222 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  U  e.  A )
22 simp2rl 1057 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
23 simp2ll 1055 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
24 hllat 33013 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
2517, 24syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
26 eqid 2443 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
2726, 10, 12hlatjcl 33016 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2817, 5, 6, 27syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
29 simp11r 1100 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
3026, 13lhpbase 33647 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3129, 30syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  ( Base `  K )
)
3226, 9, 11latmle2 15252 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
3325, 28, 31, 32syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
341, 33syl5eqbr 4330 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  U  .<_  W )
35 simp2rr 1058 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  W )
36 nbrne2 4315 . . . . . . . 8  |-  ( ( U  .<_  W  /\  -.  S  .<_  W )  ->  U  =/=  S
)
3734, 35, 36syl2anc 661 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  U  =/=  S )
38 cdleme4.f . . . . . . . 8  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
39 cdleme4.g . . . . . . . 8  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
409, 10, 11, 12, 13, 1, 38, 39cdleme7aa 33891 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( U  .\/  S
) )
419, 10, 11, 122llnma2 33438 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  S  e.  A  /\  R  e.  A
)  /\  ( U  =/=  S  /\  -.  R  .<_  ( U  .\/  S
) ) )  -> 
( ( R  .\/  U )  ./\  ( R  .\/  S ) )  =  R )
4217, 21, 22, 23, 37, 40, 41syl132anc 1236 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  U )  ./\  ( R  .\/  S ) )  =  R )
4316, 42eqtrd 2475 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  R )
4443oveq1d 6111 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  ./\  W )  =  ( R 
./\  W ) )
45 hlol 33011 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
4617, 45syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  OL )
4726, 10, 12hlatjcl 33016 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
4817, 23, 22, 47syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  S )  e.  (
Base `  K )
)
4926, 11latmmdir 32885 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  ./\  W )  =  ( ( ( P  .\/  Q
)  ./\  W )  ./\  ( ( R  .\/  S )  ./\  W )
) )
5046, 28, 48, 31, 49syl13anc 1220 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  ./\  W )  =  ( ( ( P  .\/  Q
)  ./\  W )  ./\  ( ( R  .\/  S )  ./\  W )
) )
51 eqid 2443 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
529, 11, 51, 12, 13lhpmat 33679 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
534, 7, 52syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  ./\ 
W )  =  ( 0. `  K ) )
5444, 50, 533eqtr3d 2483 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( (
( P  .\/  Q
)  ./\  W )  ./\  ( ( R  .\/  S )  ./\  W )
)  =  ( 0.
`  K ) )
553, 54syl5eq 2487 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( U  ./\ 
V )  =  ( 0. `  K ) )
56 hlatl 33010 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
5717, 56syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  AtLat
)
58 simp33 1026 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
599, 10, 11, 12, 13, 1, 38, 39, 2cdleme7b 33893 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  V  e.  A )
604, 7, 22, 58, 8, 59syl113anc 1230 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  V  e.  A )
6111, 51, 12atnem0 32968 . . 3  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  V  e.  A )  ->  ( U  =/=  V  <->  ( U  ./\ 
V )  =  ( 0. `  K ) ) )
6257, 21, 60, 61syl3anc 1218 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( U  =/=  V  <->  ( U  ./\  V )  =  ( 0.
`  K ) ) )
6355, 62mpbird 232 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  U  =/=  V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   Basecbs 14179   lecple 14250   joincjn 15119   meetcmee 15120   0.cp0 15212   Latclat 15220   OLcol 32824   Atomscatm 32913   AtLatcal 32914   HLchlt 33000   LHypclh 33633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-p1 15215  df-lat 15221  df-clat 15283  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-psubsp 33152  df-pmap 33153  df-padd 33445  df-lhyp 33637
This theorem is referenced by:  cdleme7d  33895  cdleme7ga  33897
  Copyright terms: Public domain W3C validator