Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50trn3 Structured version   Unicode version

Theorem cdleme50trn3 34038
Description: Part of proof that  F is a translation.  P  =  Q case. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b  |-  B  =  ( Base `  K
)
cdlemef50.l  |-  .<_  =  ( le `  K )
cdlemef50.j  |-  .\/  =  ( join `  K )
cdlemef50.m  |-  ./\  =  ( meet `  K )
cdlemef50.a  |-  A  =  ( Atoms `  K )
cdlemef50.h  |-  H  =  ( LHyp `  K
)
cdlemef50.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef50.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs50.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef50.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme50trn3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
( R  .\/  ( F `  R )
)  ./\  W )  =  U )
Distinct variable groups:    t, s, x, y, z,  ./\    .\/ , s,
t, x, y, z    .<_ , s, t, x, y, z    A, s, t, x, y, z    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    K, s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    R, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme50trn3
StepHypRef Expression
1 simpl1 1008 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simprr 764 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3 cdlemef50.l . . . . . 6  |-  .<_  =  ( le `  K )
4 cdlemef50.m . . . . . 6  |-  ./\  =  ( meet `  K )
5 eqid 2422 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
6 cdlemef50.a . . . . . 6  |-  A  =  ( Atoms `  K )
7 cdlemef50.h . . . . . 6  |-  H  =  ( LHyp `  K
)
83, 4, 5, 6, 7lhpmat 33513 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
91, 2, 8syl2anc 665 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  ./\  W )  =  ( 0. `  K
) )
10 simprrl 772 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A )
11 cdlemef50.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1211, 6atbase 32773 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  B )
1310, 12syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  B )
14 simprl 762 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  =  Q )
15 cdlemef50.f . . . . . . . . 9  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
1615cdleme31id 33879 . . . . . . . 8  |-  ( ( R  e.  B  /\  P  =  Q )  ->  ( F `  R
)  =  R )
1713, 14, 16syl2anc 665 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( F `  R )  =  R )
1817oveq2d 6317 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( F `  R ) )  =  ( R  .\/  R
) )
19 simpl1l 1056 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
20 cdlemef50.j . . . . . . . 8  |-  .\/  =  ( join `  K )
2120, 6hlatjidm 32852 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
2219, 10, 21syl2anc 665 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  R )  =  R )
2318, 22eqtrd 2463 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( F `  R ) )  =  R )
2423oveq1d 6316 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
( R  .\/  ( F `  R )
)  ./\  W )  =  ( R  ./\  W ) )
25 simpl2 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
263, 4, 5, 6, 7lhpmat 33513 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
271, 25, 26syl2anc 665 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  ./\  W )  =  ( 0. `  K
) )
289, 24, 273eqtr4d 2473 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
( R  .\/  ( F `  R )
)  ./\  W )  =  ( P  ./\  W ) )
29 simpl2l 1058 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A )
3020, 6hlatjidm 32852 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( P  .\/  P
)  =  P )
3119, 29, 30syl2anc 665 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  P )  =  P )
3214oveq2d 6317 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  P )  =  ( P  .\/  Q
) )
3331, 32eqtr3d 2465 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  =  ( P  .\/  Q ) )
3433oveq1d 6316 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  ./\  W )  =  ( ( P  .\/  Q )  ./\  W )
)
3528, 34eqtrd 2463 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
( R  .\/  ( F `  R )
)  ./\  W )  =  ( ( P 
.\/  Q )  ./\  W ) )
36 cdlemef50.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
3735, 36syl6eqr 2481 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
( R  .\/  ( F `  R )
)  ./\  W )  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   [_csb 3395   ifcif 3909   class class class wbr 4420    |-> cmpt 4479   ` cfv 5597   iota_crio 6262  (class class class)co 6301   Basecbs 15108   lecple 15184   joincjn 16176   meetcmee 16177   0.cp0 16270   Atomscatm 32747   HLchlt 32834   LHypclh 33467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-preset 16160  df-poset 16178  df-plt 16191  df-lub 16207  df-glb 16208  df-join 16209  df-meet 16210  df-p0 16272  df-lat 16279  df-covers 32750  df-ats 32751  df-atl 32782  df-cvlat 32806  df-hlat 32835  df-lhyp 33471
This theorem is referenced by:  cdleme50trn123  34039
  Copyright terms: Public domain W3C validator