Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ltrn Structured version   Unicode version

Theorem cdleme50ltrn 35570
Description: Part of proof of Lemma E in [Crawley] p. 113.  F is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b  |-  B  =  ( Base `  K
)
cdlemef50.l  |-  .<_  =  ( le `  K )
cdlemef50.j  |-  .\/  =  ( join `  K )
cdlemef50.m  |-  ./\  =  ( meet `  K )
cdlemef50.a  |-  A  =  ( Atoms `  K )
cdlemef50.h  |-  H  =  ( LHyp `  K
)
cdlemef50.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef50.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs50.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef50.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdleme50ltrn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdleme50ltrn  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
Distinct variable groups:    t, s, x, y, z,  ./\    .\/ , s,
t, x, y, z    .<_ , s, t, x, y, z    A, s, t, x, y, z    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    K, s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z
Allowed substitution hints:    D( t)    T( x, y, z, t, s)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme50ltrn
Dummy variables  e 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemef50.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemef50.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemef50.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemef50.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemef50.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemef50.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef50.d . . 3  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdlemefs50.e . . 3  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdlemef50.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
11 eqid 2467 . . 3  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ldil 35561 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  ( ( LDil `  K
) `  W )
)
13 simp1 996 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
14 simp2l 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  d  e.  A
)
15 simp3l 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  -.  d  .<_  W )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 35567 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  -.  d  .<_  W ) )  ->  ( (
d  .\/  ( F `  d ) )  ./\  W )  =  U )
1713, 14, 15, 16syl12anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( d 
.\/  ( F `  d ) )  ./\  W )  =  U )
18 simp2r 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  e  e.  A
)
19 simp3r 1025 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  -.  e  .<_  W )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 35567 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( e  e.  A  /\  -.  e  .<_  W ) )  ->  ( (
e  .\/  ( F `  e ) )  ./\  W )  =  U )
2113, 18, 19, 20syl12anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( e 
.\/  ( F `  e ) )  ./\  W )  =  U )
2217, 21eqtr4d 2511 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( d  e.  A  /\  e  e.  A
)  /\  ( -.  d  .<_  W  /\  -.  e  .<_  W ) )  ->  ( ( d 
.\/  ( F `  d ) )  ./\  W )  =  ( ( e  .\/  ( F `
 e ) ) 
./\  W ) )
23223exp 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( (
d  e.  A  /\  e  e.  A )  ->  ( ( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  (
( d  .\/  ( F `  d )
)  ./\  W )  =  ( ( e 
.\/  ( F `  e ) )  ./\  W ) ) ) )
2423ralrimivv 2884 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  A. d  e.  A  A. e  e.  A  ( ( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  ( ( d 
.\/  ( F `  d ) )  ./\  W )  =  ( ( e  .\/  ( F `
 e ) ) 
./\  W ) ) )
25 cdleme50ltrn.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
262, 3, 4, 5, 6, 11, 25isltrn 35132 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  ( (
LDil `  K ) `  W )  /\  A. d  e.  A  A. e  e.  A  (
( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  (
( d  .\/  ( F `  d )
)  ./\  W )  =  ( ( e 
.\/  ( F `  e ) )  ./\  W ) ) ) ) )
27263ad2ant1 1017 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F  e.  T  <->  ( F  e.  ( ( LDil `  K
) `  W )  /\  A. d  e.  A  A. e  e.  A  ( ( -.  d  .<_  W  /\  -.  e  .<_  W )  ->  (
( d  .\/  ( F `  d )
)  ./\  W )  =  ( ( e 
.\/  ( F `  e ) )  ./\  W ) ) ) ) )
2812, 24, 27mpbir2and 920 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   [_csb 3435   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588   iota_crio 6245  (class class class)co 6285   Basecbs 14493   lecple 14565   joincjn 15434   meetcmee 15435   Atomscatm 34277   HLchlt 34364   LHypclh 34997   LDilcldil 35113   LTrncltrn 35114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-riotaBAD 33973
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-undef 7003  df-map 7423  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-p1 15530  df-lat 15536  df-clat 15598  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-llines 34511  df-lplanes 34512  df-lvols 34513  df-lines 34514  df-psubsp 34516  df-pmap 34517  df-padd 34809  df-lhyp 35001  df-laut 35002  df-ldil 35117  df-ltrn 35118
This theorem is referenced by:  cdleme51finvtrN  35571  cdleme50ex  35572  cdlemg1a  35583  cdlemg1ltrnlem  35587
  Copyright terms: Public domain W3C validator