Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme48fvg Structured version   Unicode version

Theorem cdleme48fvg 33986
Description: Remove  P  =/=  Q condition in cdleme48fv 33985. TODO: Can this replace uses of cdleme32a 33927? TODO: Can this be used to help prove the  R or  S case where  X is an atom? TODO: Can this be proved more directly by eliminating  P  =/=  Q in earlier theorems? Should this replace uses of cdleme48fv 33985? (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b  |-  B  =  ( Base `  K
)
cdlemef46.l  |-  .<_  =  ( le `  K )
cdlemef46.j  |-  .\/  =  ( join `  K )
cdlemef46.m  |-  ./\  =  ( meet `  K )
cdlemef46.a  |-  A  =  ( Atoms `  K )
cdlemef46.h  |-  H  =  ( LHyp `  K
)
cdlemef46.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme48fvg  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    S, s, t, x, y, z    X, s, t, x, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)    X( y)

Proof of Theorem cdleme48fvg
StepHypRef Expression
1 simpl3r 1061 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( S  .\/  ( X  ./\  W
) )  =  X )
2 simp3ll 1076 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  S  e.  A
)
32adantr 466 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  S  e.  A )
4 cdlemef46.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 cdlemef46.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 32774 . . . . . 6  |-  ( S  e.  A  ->  S  e.  B )
73, 6syl 17 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  S  e.  B )
8 cdlemef46.f . . . . . 6  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
98cdleme31id 33880 . . . . 5  |-  ( ( S  e.  B  /\  P  =  Q )  ->  ( F `  S
)  =  S )
107, 9sylancom 671 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( F `  S )  =  S )
1110oveq1d 6317 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( ( F `  S )  .\/  ( X  ./\  W
) )  =  ( S  .\/  ( X 
./\  W ) ) )
12 simp2l 1031 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  X  e.  B
)
138cdleme31id 33880 . . . 4  |-  ( ( X  e.  B  /\  P  =  Q )  ->  ( F `  X
)  =  X )
1412, 13sylan 473 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( F `  X )  =  X )
151, 11, 143eqtr4rd 2474 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
16 simpl1 1008 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
17 simpr 462 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  P  =/=  Q )
18 simpl2 1009 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
19 simpl3 1010 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )
20 cdlemef46.l . . . 4  |-  .<_  =  ( le `  K )
21 cdlemef46.j . . . 4  |-  .\/  =  ( join `  K )
22 cdlemef46.m . . . 4  |-  ./\  =  ( meet `  K )
23 cdlemef46.h . . . 4  |-  H  =  ( LHyp `  K
)
24 cdlemef46.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
25 cdlemef46.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
26 cdlemefs46.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
274, 20, 21, 22, 5, 23, 24, 25, 26, 8cdleme48fv 33985 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
2816, 17, 18, 19, 27syl121anc 1269 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
2915, 28pm2.61dane 2742 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   [_csb 3395   ifcif 3909   class class class wbr 4420    |-> cmpt 4479   ` cfv 5598   iota_crio 6263  (class class class)co 6302   Basecbs 15109   lecple 15185   joincjn 16177   meetcmee 16178   Atomscatm 32748   HLchlt 32835   LHypclh 33468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-riotaBAD 32444
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-1st 6804  df-2nd 6805  df-undef 7025  df-preset 16161  df-poset 16179  df-plt 16192  df-lub 16208  df-glb 16209  df-join 16210  df-meet 16211  df-p0 16273  df-p1 16274  df-lat 16280  df-clat 16342  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-llines 32982  df-lplanes 32983  df-lvols 32984  df-lines 32985  df-psubsp 32987  df-pmap 32988  df-padd 33280  df-lhyp 33472
This theorem is referenced by:  cdlemg2fvlem  34080
  Copyright terms: Public domain W3C validator