Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme48fgv Structured version   Unicode version

Theorem cdleme48fgv 35735
Description: TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46g.b  |-  B  =  ( Base `  K
)
cdlemef46g.l  |-  .<_  =  ( le `  K )
cdlemef46g.j  |-  .\/  =  ( join `  K )
cdlemef46g.m  |-  ./\  =  ( meet `  K )
cdlemef46g.a  |-  A  =  ( Atoms `  K )
cdlemef46g.h  |-  H  =  ( LHyp `  K
)
cdlemef46g.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46g.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46g.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46g.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdlemef46.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef46.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs46.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef46.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
Assertion
Ref Expression
cdleme48fgv  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  X  e.  B )  ->  ( F `  ( G `  X )
)  =  X )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z   
a, b, c, u, v, A    B, a,
b, c, u, v   
v, D    G, s,
t, x, y, z    H, a, b, c, u, v    .\/ , a, b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a, b, c, u, v    N, a, b, c    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    V, a, b, c    W, a, b, c, u, v, x, y, z   
u, N, x, y, z    x, O, y, z    v, t    u, V    x, v, y, z, V    D, a, b, c    E, a, b, c    F, a, b, c, u, v   
t, N    U, a,
b, c, v    t, V    s, a, t, b, c, x, y, z, u, v    X, a, c, s, t, u, v, x, z
Allowed substitution hints:    D( u, t)    U( u)    E( v, u, t, s)    F( x, y, z, t, s)    G( v, u, a, b, c)    N( v, s)    O( v, u, t, s)    V( s)    X( y, b)

Proof of Theorem cdleme48fgv
StepHypRef Expression
1 simpl1 999 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  X  e.  B )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl3 1001 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  X  e.  B )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simpl2 1000 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  X  e.  B )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simpr 461 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  X  e.  B )  ->  X  e.  B )
5 cdlemef46g.b . . 3  |-  B  =  ( Base `  K
)
6 cdlemef46g.l . . 3  |-  .<_  =  ( le `  K )
7 cdlemef46g.j . . 3  |-  .\/  =  ( join `  K )
8 cdlemef46g.m . . 3  |-  ./\  =  ( meet `  K )
9 cdlemef46g.a . . 3  |-  A  =  ( Atoms `  K )
10 cdlemef46g.h . . 3  |-  H  =  ( LHyp `  K
)
11 cdlemef46.v . . 3  |-  V  =  ( ( Q  .\/  P )  ./\  W )
12 cdlemef46.n . . 3  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
13 cdlemefs46.o . . 3  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
14 cdlemef46.g . . 3  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B  A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B  A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
15 cdlemef46g.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
16 cdlemef46g.d . . 3  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
17 cdlemefs46g.e . . 3  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
18 cdlemef46g.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
195, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18cdleme48gfv 35734 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  X  e.  B )  ->  ( F `  ( G `  X )
)  =  X )
201, 2, 3, 4, 19syl31anc 1231 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  X  e.  B )  ->  ( F `  ( G `  X )
)  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   [_csb 3440   ifcif 3945   class class class wbr 4453    |-> cmpt 4511   ` cfv 5594   iota_crio 6255  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   meetcmee 15449   Atomscatm 34461   HLchlt 34548   LHypclh 35181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-riotaBAD 34157
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-undef 7014  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-llines 34695  df-lplanes 34696  df-lvols 34697  df-lines 34698  df-psubsp 34700  df-pmap 34701  df-padd 34993  df-lhyp 35185
This theorem is referenced by:  cdleme50rnlem  35741  cdleme51finvfvN  35752
  Copyright terms: Public domain W3C validator