Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme46fsvlpq Structured version   Unicode version

Theorem cdleme46fsvlpq 33781
Description: Show that  ( F `
 R ) is under  P  .\/  Q when  R is. (Contributed by NM, 1-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b  |-  B  =  ( Base `  K
)
cdlemef46.l  |-  .<_  =  ( le `  K )
cdlemef46.j  |-  .\/  =  ( join `  K )
cdlemef46.m  |-  ./\  =  ( meet `  K )
cdlemef46.a  |-  A  =  ( Atoms `  K )
cdlemef46.h  |-  H  =  ( LHyp `  K
)
cdlemef46.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme46fsvlpq  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  .<_  ( P 
.\/  Q ) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    R, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)

Proof of Theorem cdleme46fsvlpq
StepHypRef Expression
1 cdlemef46.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemef46.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemef46.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemef46.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemef46.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemef46.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemef46.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef46.d . . 3  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdlemefs46.e . . 3  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 eqid 2429 . . 3  |-  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) )  =  (
iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
11 eqid 2429 . . 3  |-  if ( s  .<_  ( P  .\/  Q ) ,  (
iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) ) , 
[_ s  /  t ]_ D )  =  if ( s  .<_  ( P 
.\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) ) , 
[_ s  /  t ]_ D )
12 eqid 2429 . . 3  |-  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) )  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) )
13 cdlemef46.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cdlemefs32fva1 33699 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  =  [_ R  /  s ]_ if ( s  .<_  ( P 
.\/  Q ) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) ) , 
[_ s  /  t ]_ D ) )
15 vex 3090 . . . 4  |-  s  e. 
_V
16 eqid 2429 . . . . 5  |-  ( ( s  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
178, 16cdleme31sc 33660 . . . 4  |-  ( s  e.  _V  ->  [_ s  /  t ]_ D  =  ( ( s 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s ) 
./\  W ) ) ) )
1815, 17ax-mp 5 . . 3  |-  [_ s  /  t ]_ D  =  ( ( s 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s ) 
./\  W ) ) )
19 eqid 2429 . . 3  |-  ( ( P  .\/  Q ) 
./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
20 eqid 2429 . . 3  |-  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) ) ) )  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) ) ) )
211, 2, 3, 4, 5, 6, 7, 18, 8, 9, 10, 11, 19, 20cdleme41sn3a 33709 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ if ( s 
.<_  ( P  .\/  Q
) ,  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .<_  ( P  .\/  Q ) )
2214, 21eqbrtrd 4446 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  .<_  ( P 
.\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   _Vcvv 3087   [_csb 3401   ifcif 3915   class class class wbr 4426    |-> cmpt 4484   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15084   lecple 15159   joincjn 16140   meetcmee 16141   Atomscatm 32538   HLchlt 32625   LHypclh 33258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7028  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262
This theorem is referenced by:  cdlemeg46rgv  33804  cdlemeg46req  33805  cdlemeg46gfv  33806
  Copyright terms: Public domain W3C validator