Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43cN Structured version   Unicode version

Theorem cdleme43cN 33510
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 last line: r v g(s) = r v v2 (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme43.b  |-  B  =  ( Base `  K
)
cdleme43.l  |-  .<_  =  ( le `  K )
cdleme43.j  |-  .\/  =  ( join `  K )
cdleme43.m  |-  ./\  =  ( meet `  K )
cdleme43.a  |-  A  =  ( Atoms `  K )
cdleme43.h  |-  H  =  ( LHyp `  K
)
cdleme43.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme43.x  |-  X  =  ( ( Q  .\/  P )  ./\  W )
cdleme43.c  |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme43.f  |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme43.d  |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )
cdleme43.g  |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) )
cdleme43.e  |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
) )
cdleme43.v  |-  V  =  ( ( Z  .\/  S )  ./\  W )
cdleme43.y  |-  Y  =  ( ( R  .\/  D )  ./\  W )
Assertion
Ref Expression
cdleme43cN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( R  .\/  D )  =  ( R 
.\/  Y ) )

Proof of Theorem cdleme43cN
StepHypRef Expression
1 simp11 1027 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp22 1031 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3 simp1 997 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
4 simp21 1030 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  P  =/=  Q
)
5 simp23 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
6 simp3 999 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
7 cdleme43.b . . . 4  |-  B  =  ( Base `  K
)
8 cdleme43.l . . . 4  |-  .<_  =  ( le `  K )
9 cdleme43.j . . . 4  |-  .\/  =  ( join `  K )
10 cdleme43.m . . . 4  |-  ./\  =  ( meet `  K )
11 cdleme43.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdleme43.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdleme43.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
14 cdleme43.x . . . 4  |-  X  =  ( ( Q  .\/  P )  ./\  W )
15 cdleme43.c . . . 4  |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
16 cdleme43.f . . . 4  |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
) )
17 cdleme43.d . . . 4  |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )
18 cdleme43.g . . . 4  |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) )
19 cdleme43.e . . . 4  |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
) )
20 cdleme43.v . . . 4  |-  V  =  ( ( Z  .\/  S )  ./\  W )
21 cdleme43.y . . . 4  |-  Y  =  ( ( R  .\/  D )  ./\  W )
227, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21cdleme43bN 33509 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( D  e.  A  /\  -.  D  .<_  W ) )
233, 4, 5, 6, 22syl121anc 1235 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( D  e.  A  /\  -.  D  .<_  W ) )
247, 8, 9, 10, 11, 12, 21cdleme42a 33490 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( D  e.  A  /\  -.  D  .<_  W ) )  ->  ( R  .\/  D )  =  ( R  .\/  Y ) )
251, 2, 23, 24syl3anc 1230 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( R  .\/  D )  =  ( R 
.\/  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   Atomscatm 32281   HLchlt 32368   LHypclh 33001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-lines 32518  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005
This theorem is referenced by:  cdlemeg46rjgN  33541
  Copyright terms: Public domain W3C validator