Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42c Structured version   Unicode version

Theorem cdleme42c 35561
Description: Part of proof of Lemma E in [Crawley] p. 113. Match  -.  x  .<_  W. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
cdleme42.b  |-  B  =  ( Base `  K
)
cdleme42.l  |-  .<_  =  ( le `  K )
cdleme42.j  |-  .\/  =  ( join `  K )
cdleme42.m  |-  ./\  =  ( meet `  K )
cdleme42.a  |-  A  =  ( Atoms `  K )
cdleme42.h  |-  H  =  ( LHyp `  K
)
cdleme42.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme42c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  -.  ( R  .\/  V )  .<_  W )

Proof of Theorem cdleme42c
StepHypRef Expression
1 simp2r 1023 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  -.  R  .<_  W )
2 simp1l 1020 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  HL )
3 hllat 34453 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  Lat )
5 simp2l 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  e.  A )
6 cdleme42.b . . . . . 6  |-  B  =  ( Base `  K
)
7 cdleme42.a . . . . . 6  |-  A  =  ( Atoms `  K )
86, 7atbase 34379 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
95, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  e.  B )
10 cdleme42.v . . . . 5  |-  V  =  ( ( R  .\/  S )  ./\  W )
11 simp3l 1024 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  S  e.  A )
12 cdleme42.j . . . . . . . 8  |-  .\/  =  ( join `  K )
136, 12, 7hlatjcl 34456 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
142, 5, 11, 13syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  e.  B
)
15 simp1r 1021 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  H )
16 cdleme42.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
176, 16lhpbase 35087 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  B )
1815, 17syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  B )
19 cdleme42.m . . . . . . 7  |-  ./\  =  ( meet `  K )
206, 19latmcl 15551 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  B  /\  W  e.  B )  ->  (
( R  .\/  S
)  ./\  W )  e.  B )
214, 14, 18, 20syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  W )  e.  B )
2210, 21syl5eqel 2559 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  V  e.  B )
23 cdleme42.l . . . . 5  |-  .<_  =  ( le `  K )
246, 23, 12latjle12 15561 . . . 4  |-  ( ( K  e.  Lat  /\  ( R  e.  B  /\  V  e.  B  /\  W  e.  B
) )  ->  (
( R  .<_  W  /\  V  .<_  W )  <->  ( R  .\/  V )  .<_  W ) )
254, 9, 22, 18, 24syl13anc 1230 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .<_  W  /\  V  .<_  W )  <->  ( R  .\/  V )  .<_  W ) )
26 simpl 457 . . 3  |-  ( ( R  .<_  W  /\  V  .<_  W )  ->  R  .<_  W )
2725, 26syl6bir 229 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  V )  .<_  W  ->  R  .<_  W ) )
281, 27mtod 177 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  -.  ( R  .\/  V )  .<_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4452   ` cfv 5593  (class class class)co 6294   Basecbs 14502   lecple 14574   joincjn 15443   meetcmee 15444   Latclat 15544   Atomscatm 34353   HLchlt 34440   LHypclh 35073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-poset 15445  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-lat 15545  df-ats 34357  df-atl 34388  df-cvlat 34412  df-hlat 34441  df-lhyp 35077
This theorem is referenced by:  cdleme42e  35568
  Copyright terms: Public domain W3C validator