Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42a Structured version   Visualization version   Unicode version

Theorem cdleme42a 34109
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 3-Mar-2013.)
Hypotheses
Ref Expression
cdleme42.b  |-  B  =  ( Base `  K
)
cdleme42.l  |-  .<_  =  ( le `  K )
cdleme42.j  |-  .\/  =  ( join `  K )
cdleme42.m  |-  ./\  =  ( meet `  K )
cdleme42.a  |-  A  =  ( Atoms `  K )
cdleme42.h  |-  H  =  ( LHyp `  K
)
cdleme42.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme42a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )

Proof of Theorem cdleme42a
StepHypRef Expression
1 cdleme42.l . . . . 5  |-  .<_  =  ( le `  K )
2 cdleme42.j . . . . 5  |-  .\/  =  ( join `  K )
3 eqid 2471 . . . . 5  |-  ( 1.
`  K )  =  ( 1. `  K
)
4 cdleme42.a . . . . 5  |-  A  =  ( Atoms `  K )
5 cdleme42.h . . . . 5  |-  H  =  ( LHyp `  K
)
61, 2, 3, 4, 5lhpjat2 33657 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
763adant3 1050 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  W )  =  ( 1. `  K ) )
87oveq2d 6324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( ( R  .\/  S ) 
./\  ( 1. `  K ) ) )
9 cdleme42.v . . . 4  |-  V  =  ( ( R  .\/  S )  ./\  W )
109oveq2i 6319 . . 3  |-  ( R 
.\/  V )  =  ( R  .\/  (
( R  .\/  S
)  ./\  W )
)
11 simp1l 1054 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  HL )
12 simp2l 1056 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  e.  A )
13 simp3l 1058 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  S  e.  A )
14 cdleme42.b . . . . . 6  |-  B  =  ( Base `  K
)
1514, 2, 4hlatjcl 33003 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
1611, 12, 13, 15syl3anc 1292 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  e.  B
)
17 simp1r 1055 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  H )
1814, 5lhpbase 33634 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
1917, 18syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  B )
201, 2, 4hlatlej1 33011 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  R  .<_  ( R  .\/  S ) )
2111, 12, 13, 20syl3anc 1292 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  .<_  ( R  .\/  S ) )
22 cdleme42.m . . . . 5  |-  ./\  =  ( meet `  K )
2314, 1, 2, 22, 4atmod3i1 33500 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  S
)  e.  B  /\  W  e.  B )  /\  R  .<_  ( R 
.\/  S ) )  ->  ( R  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
2411, 12, 16, 19, 21, 23syl131anc 1305 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
2510, 24syl5req 2518 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( R 
.\/  V ) )
26 hlol 32998 . . . 4  |-  ( K  e.  HL  ->  K  e.  OL )
2711, 26syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  OL )
2814, 22, 3olm11 32864 . . 3  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  B )  -> 
( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2927, 16, 28syl2anc 673 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R 
.\/  S ) )
308, 25, 293eqtr3rd 2514 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   1.cp1 16362   OLcol 32811   Atomscatm 32900   HLchlt 32987   LHypclh 33620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624
This theorem is referenced by:  cdleme42d  34111  cdleme42f  34118  cdleme42g  34119  cdleme42keg  34124  cdleme43cN  34129
  Copyright terms: Public domain W3C validator