Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42a Structured version   Unicode version

Theorem cdleme42a 36610
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 3-Mar-2013.)
Hypotheses
Ref Expression
cdleme42.b  |-  B  =  ( Base `  K
)
cdleme42.l  |-  .<_  =  ( le `  K )
cdleme42.j  |-  .\/  =  ( join `  K )
cdleme42.m  |-  ./\  =  ( meet `  K )
cdleme42.a  |-  A  =  ( Atoms `  K )
cdleme42.h  |-  H  =  ( LHyp `  K
)
cdleme42.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme42a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )

Proof of Theorem cdleme42a
StepHypRef Expression
1 cdleme42.l . . . . 5  |-  .<_  =  ( le `  K )
2 cdleme42.j . . . . 5  |-  .\/  =  ( join `  K )
3 eqid 2382 . . . . 5  |-  ( 1.
`  K )  =  ( 1. `  K
)
4 cdleme42.a . . . . 5  |-  A  =  ( Atoms `  K )
5 cdleme42.h . . . . 5  |-  H  =  ( LHyp `  K
)
61, 2, 3, 4, 5lhpjat2 36158 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
763adant3 1014 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  W )  =  ( 1. `  K ) )
87oveq2d 6212 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( ( R  .\/  S ) 
./\  ( 1. `  K ) ) )
9 cdleme42.v . . . 4  |-  V  =  ( ( R  .\/  S )  ./\  W )
109oveq2i 6207 . . 3  |-  ( R 
.\/  V )  =  ( R  .\/  (
( R  .\/  S
)  ./\  W )
)
11 simp1l 1018 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  HL )
12 simp2l 1020 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  e.  A )
13 simp3l 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  S  e.  A )
14 cdleme42.b . . . . . 6  |-  B  =  ( Base `  K
)
1514, 2, 4hlatjcl 35504 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
1611, 12, 13, 15syl3anc 1226 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  e.  B
)
17 simp1r 1019 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  H )
1814, 5lhpbase 36135 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
1917, 18syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  W  e.  B )
201, 2, 4hlatlej1 35512 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  R  .<_  ( R  .\/  S ) )
2111, 12, 13, 20syl3anc 1226 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  R  .<_  ( R  .\/  S ) )
22 cdleme42.m . . . . 5  |-  ./\  =  ( meet `  K )
2314, 1, 2, 22, 4atmod3i1 36001 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  S
)  e.  B  /\  W  e.  B )  /\  R  .<_  ( R 
.\/  S ) )  ->  ( R  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
2411, 12, 16, 19, 21, 23syl131anc 1239 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  ( ( R  .\/  S )  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
2510, 24syl5req 2436 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( R 
.\/  V ) )
26 hlol 35499 . . . 4  |-  ( K  e.  HL  ->  K  e.  OL )
2711, 26syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  K  e.  OL )
2814, 22, 3olm11 35365 . . 3  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  B )  -> 
( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2927, 16, 28syl2anc 659 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R 
.\/  S ) )
308, 25, 293eqtr3rd 2432 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( R  .\/  S )  =  ( R  .\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   joincjn 15690   meetcmee 15691   1.cp1 15785   OLcol 35312   Atomscatm 35401   HLchlt 35488   LHypclh 36121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-p1 15787  df-lat 15793  df-clat 15855  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-psubsp 35640  df-pmap 35641  df-padd 35933  df-lhyp 36125
This theorem is referenced by:  cdleme42d  36612  cdleme42f  36619  cdleme42g  36620  cdleme42keg  36625  cdleme43cN  36630
  Copyright terms: Public domain W3C validator