Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3d Unicode version

Theorem cdleme3d 30713
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 30718 and cdleme3 30719. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme3.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme3d  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )

Proof of Theorem cdleme3d
StepHypRef Expression
1 cdleme1.f . 2  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
2 cdleme3.3 . . . 4  |-  V  =  ( ( P  .\/  R )  ./\  W )
32oveq2i 6051 . . 3  |-  ( Q 
.\/  V )  =  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
)
43oveq2i 6051 . 2  |-  ( ( R  .\/  U ) 
./\  ( Q  .\/  V ) )  =  ( ( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
51, 4eqtr4i 2427 1  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   LHypclh 30466
This theorem is referenced by:  cdleme3g  30716  cdleme3h  30717  cdleme9  30735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043
  Copyright terms: Public domain W3C validator