Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3b Structured version   Unicode version

Theorem cdleme3b 35426
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 35433 and cdleme3 35434. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme3b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R
)

Proof of Theorem cdleme3b
StepHypRef Expression
1 simpll 753 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 simpr3l 1057 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A
)
3 eqid 2467 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 cdleme1.a . . . . 5  |-  A  =  ( Atoms `  K )
53, 4atbase 34487 . . . 4  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
62, 5syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  (
Base `  K )
)
7 hllat 34561 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
87ad2antrr 725 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
9 cdleme1.f . . . . 5  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
10 cdleme1.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
11 cdleme1.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
12 cdleme1.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
13 cdleme1.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
14 cdleme1.u . . . . . . . . . 10  |-  U  =  ( ( P  .\/  Q )  ./\  W )
1510, 11, 12, 4, 13, 14lhpat2 35242 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
16153adant3r3 1207 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  A
)
173, 4atbase 34487 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
1816, 17syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  (
Base `  K )
)
193, 11latjcl 15555 . . . . . . 7  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( R  .\/  U )  e.  ( Base `  K
) )
208, 6, 18, 19syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  e.  ( Base `  K ) )
21 simpr2l 1055 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A
)
223, 4atbase 34487 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2321, 22syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  (
Base `  K )
)
24 simpr1l 1053 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A
)
253, 4atbase 34487 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2624, 25syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  (
Base `  K )
)
273, 11latjcl 15555 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
288, 26, 6, 27syl3anc 1228 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  R )  e.  ( Base `  K ) )
293, 13lhpbase 35195 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3029ad2antlr 726 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  (
Base `  K )
)
313, 12latmcl 15556 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
328, 28, 30, 31syl3anc 1228 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  R )  ./\  W )  e.  ( Base `  K ) )
333, 11latjcl 15555 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
348, 23, 32, 33syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )
353, 12latmcl 15556 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  e.  (
Base `  K )
)
368, 20, 34, 35syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  e.  ( Base `  K ) )
379, 36syl5eqel 2559 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  e.  (
Base `  K )
)
383, 11latjcl 15555 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  F  e.  ( Base `  K
) )  ->  ( R  .\/  F )  e.  ( Base `  K
) )
398, 6, 37, 38syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  e.  ( Base `  K ) )
403, 11latjcl 15555 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
418, 26, 23, 40syl3anc 1228 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
423, 10, 12latmle2 15581 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
438, 41, 30, 42syl3anc 1228 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  W )
4414, 43syl5eqbr 4486 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  W )
45 simpr3r 1058 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  -.  R  .<_  W )
46 nbrne2 4471 . . . . . . 7  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4744, 45, 46syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  =/=  R
)
4847necomd 2738 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  U
)
49 eqid 2467 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
5011, 49, 4atcvr1 34614 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
511, 2, 16, 50syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/= 
U  <->  R (  <o  `  K
) ( R  .\/  U ) ) )
5248, 51mpbid 210 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  U ) )
53 simpr3 1004 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5424, 21, 533jca 1176 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )
5510, 11, 12, 4, 13, 14, 9cdleme1 35424 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
5654, 55syldan 470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R 
.\/  U ) )
5752, 56breqtrrd 4479 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  F ) )
583, 49cvrne 34479 . . 3  |-  ( ( ( K  e.  HL  /\  R  e.  ( Base `  K )  /\  ( R  .\/  F )  e.  ( Base `  K
) )  /\  R
(  <o  `  K )
( R  .\/  F
) )  ->  R  =/=  ( R  .\/  F
) )
591, 6, 39, 57, 58syl31anc 1231 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  ( R  .\/  F ) )
60 oveq2 6303 . . . . . 6  |-  ( F  =  R  ->  ( R  .\/  F )  =  ( R  .\/  R
) )
6160adantl 466 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  ( R  .\/  F )  =  ( R  .\/  R
) )
6211, 4hlatjidm 34566 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
631, 2, 62syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  R )  =  R )
6463adantr 465 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  ( R  .\/  R )  =  R )
6561, 64eqtr2d 2509 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  F  =  R )  ->  R  =  ( R  .\/  F ) )
6665ex 434 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( F  =  R  ->  R  =  ( R  .\/  F ) ) )
6766necon3d 2691 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/=  ( R  .\/  F
)  ->  F  =/=  R ) )
6859, 67mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   meetcmee 15449   Latclat 15549    <o ccvr 34460   Atomscatm 34461   HLchlt 34548   LHypclh 35181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-psubsp 34700  df-pmap 34701  df-padd 34993  df-lhyp 35185
This theorem is referenced by:  cdleme36m  35658
  Copyright terms: Public domain W3C validator