Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme39n Structured version   Unicode version

Theorem cdleme39n 35262
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT.  E,  Y,  G,  Z serve as f(t), f(u), ft( R), ft( S). Put hypotheses of cdleme38n 35260 in convention of cdleme32sn1awN 35228. TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013.)
Hypotheses
Ref Expression
cdleme39.l  |-  .<_  =  ( le `  K )
cdleme39.j  |-  .\/  =  ( join `  K )
cdleme39.m  |-  ./\  =  ( meet `  K )
cdleme39.a  |-  A  =  ( Atoms `  K )
cdleme39.h  |-  H  =  ( LHyp `  K
)
cdleme39.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme39.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme39.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme39.y  |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
cdleme39.z  |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( S  .\/  u )  ./\  W
) ) )
Assertion
Ref Expression
cdleme39n  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  G  =/=  Z )

Proof of Theorem cdleme39n
StepHypRef Expression
1 cdleme39.l . . 3  |-  .<_  =  ( le `  K )
2 cdleme39.j . . 3  |-  .\/  =  ( join `  K )
3 cdleme39.m . . 3  |-  ./\  =  ( meet `  K )
4 cdleme39.a . . 3  |-  A  =  ( Atoms `  K )
5 cdleme39.h . . 3  |-  H  =  ( LHyp `  K
)
6 cdleme39.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme39.e . . 3  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
8 cdleme39.y . . 3  |-  Y  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
9 eqid 2467 . . 3  |-  ( ( t  .\/  E ) 
./\  W )  =  ( ( t  .\/  E )  ./\  W )
10 eqid 2467 . . 3  |-  ( ( u  .\/  Y ) 
./\  W )  =  ( ( u  .\/  Y )  ./\  W )
11 eqid 2467 . . 3  |-  ( ( R  .\/  ( ( t  .\/  E ) 
./\  W ) ) 
./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )  =  ( ( R  .\/  (
( t  .\/  E
)  ./\  W )
)  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )
12 eqid 2467 . . 3  |-  ( ( S  .\/  ( ( u  .\/  Y ) 
./\  W ) ) 
./\  ( Y  .\/  ( ( u  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  (
( u  .\/  Y
)  ./\  W )
)  ./\  ( Y  .\/  ( ( u  .\/  S )  ./\  W )
) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme38n 35260 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( R  .\/  ( ( t  .\/  E )  ./\  W )
)  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )  =/=  (
( S  .\/  (
( u  .\/  Y
)  ./\  W )
)  ./\  ( Y  .\/  ( ( u  .\/  S )  ./\  W )
) ) )
14 simp11 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
15 simp12l 1109 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  P  e.  A )
16 simp13l 1111 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  Q  e.  A )
17 simp22l 1115 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  e.  A )
18 simp22r 1116 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  -.  R  .<_  W )
19 simp311 1143 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  .<_  ( P  .\/  Q ) )
20 simp32l 1121 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( t  e.  A  /\  -.  t  .<_  W ) )
21 cdleme39.g . . . 4  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( R  .\/  t )  ./\  W
) ) )
221, 2, 3, 4, 5, 6, 7, 21, 9cdleme39a 35261 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  ( t  e.  A  /\  -.  t  .<_  W ) ) )  ->  G  =  ( ( R  .\/  (
( t  .\/  E
)  ./\  W )
)  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) ) )
2314, 15, 16, 17, 18, 19, 20, 22syl322anc 1256 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  G  =  ( ( R  .\/  ( ( t 
.\/  E )  ./\  W ) )  ./\  ( E  .\/  ( ( t 
.\/  R )  ./\  W ) ) ) )
24 simp23l 1117 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  S  e.  A )
25 simp23r 1118 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  -.  S  .<_  W )
26 simp312 1144 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  S  .<_  ( P  .\/  Q ) )
27 simp33l 1123 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( u  e.  A  /\  -.  u  .<_  W ) )
28 cdleme39.z . . . 4  |-  Z  =  ( ( P  .\/  Q )  ./\  ( Y  .\/  ( ( S  .\/  u )  ./\  W
) ) )
291, 2, 3, 4, 5, 6, 8, 28, 10cdleme39a 35261 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .<_  ( P  .\/  Q )  /\  ( u  e.  A  /\  -.  u  .<_  W ) ) )  ->  Z  =  ( ( S  .\/  (
( u  .\/  Y
)  ./\  W )
)  ./\  ( Y  .\/  ( ( u  .\/  S )  ./\  W )
) ) )
3014, 15, 16, 24, 25, 26, 27, 29syl322anc 1256 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  Z  =  ( ( S  .\/  ( ( u 
.\/  Y )  ./\  W ) )  ./\  ( Y  .\/  ( ( u 
.\/  S )  ./\  W ) ) ) )
3113, 23, 303netr4d 2772 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  R  =/=  S )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  G  =/=  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   lecple 14558   joincjn 15427   meetcmee 15428   Atomscatm 34060   HLchlt 34147   LHypclh 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784
This theorem is referenced by:  cdleme40m  35263
  Copyright terms: Public domain W3C validator