Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32fva Structured version   Unicode version

Theorem cdleme32fva 34093
Description: Part of proof of Lemma D in [Crawley] p. 113. Value of  F at an atom not under  W. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
cdleme32.b  |-  B  =  ( Base `  K
)
cdleme32.l  |-  .<_  =  ( le `  K )
cdleme32.j  |-  .\/  =  ( join `  K )
cdleme32.m  |-  ./\  =  ( meet `  K )
cdleme32.a  |-  A  =  ( Atoms `  K )
cdleme32.h  |-  H  =  ( LHyp `  K
)
cdleme32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme32.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme32.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdleme32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme32.o  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme32.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme32fva  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z   
y, C    D, s,
y, z    y, E    H, s, t    .\/ , s,
t, x, y, z    K, s, t    .<_ , s, t, x, y, z    ./\ , s,
t, x, y, z   
x, N, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    R, s, t, y    y, H    y, K    x, R, z    z, H    z, K
Allowed substitution hints:    C( x, z, t, s)    D( x, t)    E( x, z, t, s)    F( x, y, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y,
t, s)    O( x, y, z, t, s)

Proof of Theorem cdleme32fva
StepHypRef Expression
1 simp2l 1014 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  R  e.  A )
2 cdleme32.b . . . . 5  |-  B  =  ( Base `  K
)
3 cdleme32.a . . . . 5  |-  A  =  ( Atoms `  K )
42, 3atbase 32946 . . . 4  |-  ( R  e.  A  ->  R  e.  B )
51, 4syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  R  e.  B )
6 cdleme32.o . . . 4  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
7 eqid 2443 . . . 4  |-  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )
86, 7cdleme31so 34035 . . 3  |-  ( R  e.  B  ->  [_ R  /  x ]_ O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
95, 8syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  [_ R  /  x ]_ O  =  (
iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
10 simp1 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
11 simp3 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  P  =/=  Q )
12 simp2 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
13 cdleme32.l . . . . 5  |-  .<_  =  ( le `  K )
14 cdleme32.j . . . . 5  |-  .\/  =  ( join `  K )
15 cdleme32.m . . . . 5  |-  ./\  =  ( meet `  K )
16 cdleme32.h . . . . 5  |-  H  =  ( LHyp `  K
)
17 cdleme32.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme32.c . . . . 5  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
19 cdleme32.d . . . . 5  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
20 cdleme32.e . . . . 5  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
21 cdleme32.i . . . . 5  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
22 cdleme32.n . . . . 5  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
232, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22cdleme32snb 34092 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  [_ R  /  s ]_ N  e.  B )
2410, 11, 12, 23syl12anc 1216 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  [_ R  / 
s ]_ N  e.  B
)
25 nfv 1673 . . . . . . . . 9  |-  F/ s  -.  R  .<_  W
26 nfcsb1v 3316 . . . . . . . . . 10  |-  F/_ s [_ R  /  s ]_ N
2726nfeq2 2605 . . . . . . . . 9  |-  F/ s  z  =  [_ R  /  s ]_ N
2825, 27nfim 1853 . . . . . . . 8  |-  F/ s ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N
)
29 breq1 4307 . . . . . . . . . . 11  |-  ( s  =  R  ->  (
s  .<_  W  <->  R  .<_  W ) )
3029notbid 294 . . . . . . . . . 10  |-  ( s  =  R  ->  ( -.  s  .<_  W  <->  -.  R  .<_  W ) )
31 csbeq1a 3309 . . . . . . . . . . 11  |-  ( s  =  R  ->  N  =  [_ R  /  s ]_ N )
3231eqeq2d 2454 . . . . . . . . . 10  |-  ( s  =  R  ->  (
z  =  N  <->  z  =  [_ R  /  s ]_ N ) )
3330, 32imbi12d 320 . . . . . . . . 9  |-  ( s  =  R  ->  (
( -.  s  .<_  W  ->  z  =  N )  <->  ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N ) ) )
3433ax-gen 1591 . . . . . . . 8  |-  A. s
( s  =  R  ->  ( ( -.  s  .<_  W  ->  z  =  N )  <->  ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N ) ) )
35 ceqsralt 3008 . . . . . . . 8  |-  ( ( F/ s ( -.  R  .<_  W  ->  z  =  [_ R  / 
s ]_ N )  /\  A. s ( s  =  R  ->  ( ( -.  s  .<_  W  -> 
z  =  N )  <-> 
( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N
) ) )  /\  R  e.  A )  ->  ( A. s  e.  A  ( s  =  R  ->  ( -.  s  .<_  W  ->  z  =  N ) )  <->  ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N ) ) )
3628, 34, 35mp3an12 1304 . . . . . . 7  |-  ( R  e.  A  ->  ( A. s  e.  A  ( s  =  R  ->  ( -.  s  .<_  W  ->  z  =  N ) )  <->  ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N ) ) )
3736adantr 465 . . . . . 6  |-  ( ( R  e.  A  /\  -.  R  .<_  W )  ->  ( A. s  e.  A  ( s  =  R  ->  ( -.  s  .<_  W  ->  z  =  N ) )  <-> 
( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N
) ) )
38373ad2ant2 1010 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( A. s  e.  A  (
s  =  R  -> 
( -.  s  .<_  W  ->  z  =  N ) )  <->  ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N ) ) )
39 simp11 1018 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( K  e.  HL  /\  W  e.  H ) )
40 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( 0.
`  K )  =  ( 0. `  K
)
4113, 15, 40, 3, 16lhpmat 33686 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
4239, 12, 41syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( R  ./\ 
W )  =  ( 0. `  K ) )
4342adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
4443oveq2d 6119 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( s  .\/  ( R  ./\  W ) )  =  ( s  .\/  ( 0. `  K ) ) )
45 simp11l 1099 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  K  e.  HL )
4645adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  HL )
47 hlol 33018 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  OL )
4846, 47syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  OL )
492, 3atbase 32946 . . . . . . . . . . . . . 14  |-  ( s  e.  A  ->  s  e.  B )
5049ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
s  e.  B )
512, 14, 40olj01 32882 . . . . . . . . . . . . 13  |-  ( ( K  e.  OL  /\  s  e.  B )  ->  ( s  .\/  ( 0. `  K ) )  =  s )
5248, 50, 51syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( s  .\/  ( 0. `  K ) )  =  s )
5344, 52eqtrd 2475 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( s  .\/  ( R  ./\  W ) )  =  s )
5453eqeq1d 2451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( ( s  .\/  ( R  ./\  W ) )  =  R  <->  s  =  R ) )
5543oveq2d 6119 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( N  .\/  ( R  ./\  W ) )  =  ( N  .\/  ( 0. `  K ) ) )
56 simpl11 1063 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
57 simpl12 1064 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
58 simpl13 1065 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
59 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( s  e.  A  /\  -.  s  .<_  W ) )
60 simpl3 993 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  P  =/=  Q )
612, 13, 14, 15, 3, 16, 17, 18, 19, 20, 21, 22cdleme27cl 34022 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  P  =/=  Q
) )  ->  N  e.  B )
6256, 57, 58, 59, 60, 61syl122anc 1227 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  N  e.  B )
632, 14, 40olj01 32882 . . . . . . . . . . . . 13  |-  ( ( K  e.  OL  /\  N  e.  B )  ->  ( N  .\/  ( 0. `  K ) )  =  N )
6448, 62, 63syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( N  .\/  ( 0. `  K ) )  =  N )
6555, 64eqtrd 2475 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( N  .\/  ( R  ./\  W ) )  =  N )
6665eqeq2d 2454 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( z  =  ( N  .\/  ( R 
./\  W ) )  <-> 
z  =  N ) )
6754, 66imbi12d 320 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  -> 
( ( ( s 
.\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  ( s  =  R  ->  z  =  N ) ) )
6867expr 615 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  s  e.  A )  ->  ( -.  s  .<_  W  -> 
( ( ( s 
.\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  ( s  =  R  ->  z  =  N ) ) ) )
6968pm5.74d 247 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  s  e.  A )  ->  (
( -.  s  .<_  W  ->  ( ( s 
.\/  ( R  ./\  W ) )  =  R  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  <->  ( -.  s  .<_  W  ->  (
s  =  R  -> 
z  =  N ) ) ) )
70 impexp 446 . . . . . . 7  |-  ( ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  ( -.  s  .<_  W  ->  ( (
s  .\/  ( R  ./\ 
W ) )  =  R  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
71 bi2.04 361 . . . . . . 7  |-  ( ( s  =  R  -> 
( -.  s  .<_  W  ->  z  =  N ) )  <->  ( -.  s  .<_  W  ->  (
s  =  R  -> 
z  =  N ) ) )
7269, 70, 713bitr4g 288 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  s  e.  A )  ->  (
( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  ( s  =  R  ->  ( -.  s  .<_  W  ->  z  =  N ) ) ) )
7372ralbidva 2743 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  A. s  e.  A  ( s  =  R  ->  ( -.  s  .<_  W  ->  z  =  N ) ) ) )
74 simp2r 1015 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  -.  R  .<_  W )
75 biimt 335 . . . . . 6  |-  ( -.  R  .<_  W  ->  ( z  =  [_ R  /  s ]_ N  <->  ( -.  R  .<_  W  -> 
z  =  [_ R  /  s ]_ N
) ) )
7674, 75syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( z  =  [_ R  /  s ]_ N  <->  ( -.  R  .<_  W  ->  z  =  [_ R  /  s ]_ N ) ) )
7738, 73, 763bitr4d 285 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N
) )
7877adantr 465 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  /\  z  e.  B )  ->  ( A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N
) )
7924, 78riota5 6090 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  =  [_ R  / 
s ]_ N )
809, 79eqtrd 2475 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  P  =/=  Q
)  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369   F/wnf 1589    e. wcel 1756    =/= wne 2618   A.wral 2727   [_csb 3300   ifcif 3803   class class class wbr 4304    e. cmpt 4362   ` cfv 5430   iota_crio 6063  (class class class)co 6103   Basecbs 14186   lecple 14257   joincjn 15126   meetcmee 15127   0.cp0 15219   OLcol 32831   Atomscatm 32920   HLchlt 33007   LHypclh 33640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-riotaBAD 32616
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-1st 6589  df-2nd 6590  df-undef 6804  df-poset 15128  df-plt 15140  df-lub 15156  df-glb 15157  df-join 15158  df-meet 15159  df-p0 15221  df-p1 15222  df-lat 15228  df-clat 15290  df-oposet 32833  df-ol 32835  df-oml 32836  df-covers 32923  df-ats 32924  df-atl 32955  df-cvlat 32979  df-hlat 33008  df-llines 33154  df-lplanes 33155  df-lvols 33156  df-lines 33157  df-psubsp 33159  df-pmap 33160  df-padd 33452  df-lhyp 33644
This theorem is referenced by:  cdleme32fva1  34094
  Copyright terms: Public domain W3C validator