Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32e Structured version   Unicode version

Theorem cdleme32e 33928
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b  |-  B  =  ( Base `  K
)
cdleme32.l  |-  .<_  =  ( le `  K )
cdleme32.j  |-  .\/  =  ( join `  K )
cdleme32.m  |-  ./\  =  ( meet `  K )
cdleme32.a  |-  A  =  ( Atoms `  K )
cdleme32.h  |-  H  =  ( LHyp `  K
)
cdleme32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme32.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme32.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdleme32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme32.o  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme32.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme32e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y
) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z   
y, C    D, s,
y, z    y, E    H, s, t    .\/ , s,
t, x, y, z    K, s, t    .<_ , s, t, x, y, z    ./\ , s,
t, x, y, z   
x, N, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    X, s, t, x, z   
y, H    y, K    y, Y    z, H    z, K    Y, s, t, x, z
Allowed substitution hints:    C( x, z, t, s)    D( x, t)    E( x, z, t, s)    F( x, y, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y,
t, s)    O( x, y, z, t, s)    X( y)

Proof of Theorem cdleme32e
StepHypRef Expression
1 simp23l 1126 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  P  =/=  Q )
21pm2.24d 137 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( -.  P  =/=  Q  ->  X  .<_  ( N  .\/  ( Y  ./\  W
) ) ) )
3 simp11l 1116 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  K  e.  HL )
4 hllat 32845 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  K  e.  Lat )
6 simp21l 1122 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  X  e.  B )
7 simp11r 1117 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  W  e.  H )
8 cdleme32.b . . . . . . 7  |-  B  =  ( Base `  K
)
9 cdleme32.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
108, 9lhpbase 33479 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
117, 10syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  W  e.  B )
12 cdleme32.l . . . . . 6  |-  .<_  =  ( le `  K )
13 cdleme32.m . . . . . 6  |-  ./\  =  ( meet `  K )
148, 12, 13latleeqm1 16310 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  .<_  W  <->  ( X  ./\ 
W )  =  X ) )
155, 6, 11, 14syl3anc 1264 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  .<_  W  <->  ( X  ./\ 
W )  =  X ) )
168, 13latmcl 16283 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
175, 6, 11, 16syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  ./\  W )  e.  B )
18 simp21r 1123 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  Y  e.  B )
198, 13latmcl 16283 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  ./\  W
)  e.  B )
205, 18, 11, 19syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( Y  ./\  W )  e.  B )
21 simp11 1035 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
22 simp12 1036 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
23 simp13 1037 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
24 simp31 1041 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
25 cdleme32.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
26 cdleme32.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
27 cdleme32.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
28 cdleme32.c . . . . . . . . 9  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
29 cdleme32.d . . . . . . . . 9  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
30 cdleme32.e . . . . . . . . 9  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
31 cdleme32.i . . . . . . . . 9  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
32 cdleme32.n . . . . . . . . 9  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
338, 12, 25, 13, 26, 9, 27, 28, 29, 30, 31, 32cdleme27cl 33849 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  P  =/=  Q
) )  ->  N  e.  B )
3421, 22, 23, 24, 1, 33syl122anc 1273 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  N  e.  B )
358, 25latjcl 16282 . . . . . . 7  |-  ( ( K  e.  Lat  /\  N  e.  B  /\  ( Y  ./\  W )  e.  B )  -> 
( N  .\/  ( Y  ./\  W ) )  e.  B )
365, 34, 20, 35syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( N  .\/  ( Y  ./\  W ) )  e.  B
)
37 simp33 1043 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  X  .<_  Y )
388, 12, 13latmlem1 16312 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  W  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  W )  .<_  ( Y  ./\  W ) ) )
395, 6, 18, 11, 38syl13anc 1266 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  .<_  Y  ->  ( X  ./\  W )  .<_  ( Y  ./\  W ) ) )
4037, 39mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  ./\  W )  .<_  ( Y  ./\  W ) )
418, 12, 25latlej2 16292 . . . . . . 7  |-  ( ( K  e.  Lat  /\  N  e.  B  /\  ( Y  ./\  W )  e.  B )  -> 
( Y  ./\  W
)  .<_  ( N  .\/  ( Y  ./\  W ) ) )
425, 34, 20, 41syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( Y  ./\  W )  .<_  ( N  .\/  ( Y 
./\  W ) ) )
438, 12, 5, 17, 20, 36, 40, 42lattrd 16289 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  ./\  W )  .<_  ( N  .\/  ( Y 
./\  W ) ) )
44 breq1 4423 . . . . 5  |-  ( ( X  ./\  W )  =  X  ->  ( ( X  ./\  W )  .<_  ( N  .\/  ( Y  ./\  W ) )  <-> 
X  .<_  ( N  .\/  ( Y  ./\  W ) ) ) )
4543, 44syl5ibcom 223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
( X  ./\  W
)  =  X  ->  X  .<_  ( N  .\/  ( Y  ./\  W ) ) ) )
4615, 45sylbid 218 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( X  .<_  W  ->  X  .<_  ( N  .\/  ( Y  ./\  W ) ) ) )
47 simp22 1039 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )
48 pm4.53 494 . . . 4  |-  ( -.  ( P  =/=  Q  /\  -.  X  .<_  W )  <-> 
( -.  P  =/= 
Q  \/  X  .<_  W ) )
4947, 48sylib 199 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( -.  P  =/=  Q  \/  X  .<_  W ) )
502, 46, 49mpjaod 382 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  X  .<_  ( N  .\/  ( Y  ./\  W ) ) )
51 cdleme32.f . . . 4  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
5251cdleme31fv2 33876 . . 3  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  X )
536, 47, 52syl2anc 665 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  =  X )
54 simp1 1005 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
55 simp23 1040 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( P  =/=  Q  /\  -.  Y  .<_  W ) )
56 simp32 1042 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  (
s  .\/  ( Y  ./\ 
W ) )  =  Y )
57 cdleme32.o . . . 4  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
588, 12, 25, 13, 26, 9, 27, 28, 29, 30, 31, 32, 57, 51cdleme32a 33924 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( Y  e.  B  /\  ( P  =/=  Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  ( s  .\/  ( Y  ./\  W ) )  =  Y ) )  ->  ( F `  Y )  =  ( N  .\/  ( Y 
./\  W ) ) )
5954, 18, 55, 24, 56, 58syl122anc 1273 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  Y )  =  ( N  .\/  ( Y  ./\  W ) ) )
6050, 53, 593brtr4d 4451 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W )  /\  ( P  =/= 
Q  /\  -.  Y  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  (
s  .\/  ( Y  ./\ 
W ) )  =  Y  /\  X  .<_  Y ) )  ->  ( F `  X )  .<_  ( F `  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   ifcif 3909   class class class wbr 4420    |-> cmpt 4479   ` cfv 5597   iota_crio 6262  (class class class)co 6301   Basecbs 15106   lecple 15182   joincjn 16174   meetcmee 16175   Latclat 16276   Atomscatm 32745   HLchlt 32832   LHypclh 33465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-riotaBAD 32441
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-undef 7024  df-preset 16158  df-poset 16176  df-plt 16189  df-lub 16205  df-glb 16206  df-join 16207  df-meet 16208  df-p0 16270  df-p1 16271  df-lat 16277  df-clat 16339  df-oposet 32658  df-ol 32660  df-oml 32661  df-covers 32748  df-ats 32749  df-atl 32780  df-cvlat 32804  df-hlat 32833  df-llines 32979  df-lplanes 32980  df-lvols 32981  df-lines 32982  df-psubsp 32984  df-pmap 32985  df-padd 33277  df-lhyp 33469
This theorem is referenced by:  cdleme32f  33929
  Copyright terms: Public domain W3C validator