Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1 Structured version   Unicode version

Theorem cdleme31sn1 34030
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31sn1.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme31sn1.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme31sn1.c  |-  C  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
Assertion
Ref Expression
cdleme31sn1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Distinct variable groups:    t, s,
y, A    B, s    .\/ , s    .<_ , s    P, s    Q, s    R, s, t, y    W, s
Allowed substitution hints:    B( y, t)    C( y, t, s)    D( y, t, s)    P( y, t)    Q( y, t)    G( y, t, s)    I( y, t, s)    .\/ ( y, t)    .<_ ( y, t)    N( y, t, s)    W( y, t)

Proof of Theorem cdleme31sn1
StepHypRef Expression
1 cdleme31sn1.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
2 eqid 2443 . . . 4  |-  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)
31, 2cdleme31sn 34029 . . 3  |-  ( R  e.  A  ->  [_ R  /  s ]_ N  =  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  / 
s ]_ I ,  [_ R  /  s ]_ D
) )
43adantr 465 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  / 
s ]_ I ,  [_ R  /  s ]_ D
) )
5 iftrue 3802 . . . . 5  |-  ( R 
.<_  ( P  .\/  Q
)  ->  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  [_ R  /  s ]_ I
)
6 cdleme31sn1.i . . . . . 6  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
76csbeq2i 3693 . . . . 5  |-  [_ R  /  s ]_ I  =  [_ R  /  s ]_ ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
85, 7syl6eq 2491 . . . 4  |-  ( R 
.<_  ( P  .\/  Q
)  ->  if ( R  .<_  ( P  .\/  Q ) ,  [_ R  /  s ]_ I ,  [_ R  /  s ]_ D )  =  [_ R  /  s ]_ ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) ) )
9 nfcv 2584 . . . . . . . 8  |-  F/_ s A
10 nfv 1673 . . . . . . . . 9  |-  F/ s ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )
11 nfcsb1v 3309 . . . . . . . . . 10  |-  F/_ s [_ R  /  s ]_ G
1211nfeq2 2595 . . . . . . . . 9  |-  F/ s  y  =  [_ R  /  s ]_ G
1310, 12nfim 1853 . . . . . . . 8  |-  F/ s ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )
149, 13nfral 2774 . . . . . . 7  |-  F/ s A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G )
15 nfcv 2584 . . . . . . 7  |-  F/_ s B
1614, 15nfriota 6066 . . . . . 6  |-  F/_ s
( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
1716a1i 11 . . . . 5  |-  ( R  e.  A  ->  F/_ s
( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) ) )
18 csbeq1a 3302 . . . . . . . . 9  |-  ( s  =  R  ->  G  =  [_ R  /  s ]_ G )
1918eqeq2d 2454 . . . . . . . 8  |-  ( s  =  R  ->  (
y  =  G  <->  y  =  [_ R  /  s ]_ G ) )
2019imbi2d 316 . . . . . . 7  |-  ( s  =  R  ->  (
( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G )  <->  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
2120ralbidv 2740 . . . . . 6  |-  ( s  =  R  ->  ( A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G )  <->  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
2221riotabidv 6059 . . . . 5  |-  ( s  =  R  ->  ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) ) )
2317, 22csbiegf 3317 . . . 4  |-  ( R  e.  A  ->  [_ R  /  s ]_ ( iota_ y  e.  B  A. t  e.  A  (
( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) )  ->  y  =  G ) )  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) ) )
248, 23sylan9eqr 2497 . . 3  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  [_ R  /  s ]_ G
) ) )
25 cdleme31sn1.c . . 3  |-  C  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  [_ R  /  s ]_ G ) )
2624, 25syl6eqr 2493 . 2  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  if ( R  .<_  ( P 
.\/  Q ) , 
[_ R  /  s ]_ I ,  [_ R  /  s ]_ D
)  =  C )
274, 26eqtrd 2475 1  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   F/_wnfc 2571   A.wral 2720   [_csb 3293   ifcif 3796   class class class wbr 4297   iota_crio 6056  (class class class)co 6096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-iota 5386  df-riota 6057
This theorem is referenced by:  cdleme31sn1c  34037
  Copyright terms: Public domain W3C validator