Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31se Structured version   Unicode version

Theorem cdleme31se 34329
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31se.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  T )  ./\  W )
) )
cdleme31se.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme31se  |-  ( R  e.  A  ->  [_ R  /  s ]_ E  =  Y )
Distinct variable groups:    A, s    D, s    .\/ , s    ./\ , s    P, s    Q, s    R, s    W, s    T, s
Allowed substitution hints:    E( s)    Y( s)

Proof of Theorem cdleme31se
StepHypRef Expression
1 nfcvd 2612 . . 3  |-  ( R  e.  A  ->  F/_ s
( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  T )  ./\  W )
) ) )
2 oveq1 6194 . . . . . 6  |-  ( s  =  R  ->  (
s  .\/  T )  =  ( R  .\/  T ) )
32oveq1d 6202 . . . . 5  |-  ( s  =  R  ->  (
( s  .\/  T
)  ./\  W )  =  ( ( R 
.\/  T )  ./\  W ) )
43oveq2d 6203 . . . 4  |-  ( s  =  R  ->  ( D  .\/  ( ( s 
.\/  T )  ./\  W ) )  =  ( D  .\/  ( ( R  .\/  T ) 
./\  W ) ) )
54oveq2d 6203 . . 3  |-  ( s  =  R  ->  (
( P  .\/  Q
)  ./\  ( D  .\/  ( ( s  .\/  T )  ./\  W )
) )  =  ( ( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  T )  ./\  W )
) ) )
61, 5csbiegf 3407 . 2  |-  ( R  e.  A  ->  [_ R  /  s ]_ (
( P  .\/  Q
)  ./\  ( D  .\/  ( ( s  .\/  T )  ./\  W )
) )  =  ( ( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  T )  ./\  W )
) ) )
7 cdleme31se.e . . 3  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  T )  ./\  W )
) )
87csbeq2i 3783 . 2  |-  [_ R  /  s ]_ E  =  [_ R  /  s ]_ ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  T )  ./\  W )
) )
9 cdleme31se.y . 2  |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  T )  ./\  W )
) )
106, 8, 93eqtr4g 2516 1  |-  ( R  e.  A  ->  [_ R  /  s ]_ E  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   [_csb 3383  (class class class)co 6187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-rex 2799  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-br 4388  df-iota 5476  df-fv 5521  df-ov 6190
This theorem is referenced by:  cdleme31sde  34332  cdleme31sn1c  34335
  Copyright terms: Public domain W3C validator