Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31id Unicode version

Theorem cdleme31id 29272
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 18-Apr-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdleme31id  |-  ( ( X  e.  B  /\  P  =  Q )  ->  ( F `  X
)  =  X )
Distinct variable groups:    x, B    x, 
.<_    x, P    x, Q    x, W    x, X
Allowed substitution hints:    F( x)    O( x)

Proof of Theorem cdleme31id
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( P  =/=  Q  /\  -.  X  .<_  W )  ->  P  =/=  Q
)
21necon2bi 2458 . 2  |-  ( P  =  Q  ->  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )
3 cdleme31fv2.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
43cdleme31fv2 29271 . 2  |-  ( ( X  e.  B  /\  -.  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  X )
52, 4sylan2 462 1  |-  ( ( X  e.  B  /\  P  =  Q )  ->  ( F `  X
)  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   ifcif 3470   class class class wbr 3920    e. cmpt 3974   ` cfv 4592
This theorem is referenced by:  cdleme32fvaw  29317  cdleme42keg  29364  cdleme42mgN  29366  cdleme17d4  29375  cdleme48fvg  29378  cdleme50trn3  29431  cdlemg1idlemN  29450  cdlemg2idN  29474
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608
  Copyright terms: Public domain W3C validator