Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv1 Structured version   Unicode version

Theorem cdleme31fv1 36514
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme31.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
cdleme31.c  |-  C  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
Assertion
Ref Expression
cdleme31fv1  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  C )
Distinct variable groups:    x, B    x, C    x,  .<_    x, P    x, Q    x, W    x, s, z, X
Allowed substitution hints:    A( x, z, s)    B( z, s)    C( z, s)    P( z, s)    Q( z, s)    F( x, z, s)    .\/ ( x, z, s)    .<_ ( z, s)    ./\ ( x, z, s)    N( x, z, s)    O( x, z, s)    W( z, s)

Proof of Theorem cdleme31fv1
StepHypRef Expression
1 cdleme31.o . . 3  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
2 cdleme31.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
3 cdleme31.c . . 3  |-  C  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
41, 2, 3cdleme31fv 36513 . 2  |-  ( X  e.  B  ->  ( F `  X )  =  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
5 iftrue 3935 . 2  |-  ( ( P  =/=  Q  /\  -.  X  .<_  W )  ->  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X
)  =  C )
64, 5sylan9eq 2515 1  |-  ( ( X  e.  B  /\  ( P  =/=  Q  /\  -.  X  .<_  W ) )  ->  ( F `  X )  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   ` cfv 5570   iota_crio 6231  (class class class)co 6270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-riota 6232  df-ov 6273
This theorem is referenced by:  cdleme31fv1s  36515  cdleme32fvcl  36563  cdleme32a  36564  cdleme42b  36601
  Copyright terms: Public domain W3C validator