Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme29ex Structured version   Unicode version

Theorem cdleme29ex 33853
Description: Lemma for cdleme29b 33854. (Compare cdleme25a 33832.) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme27.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme27.z  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme27.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
cdleme27.d  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme27.c  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
Assertion
Ref Expression
cdleme29ex  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
Distinct variable groups:    u, s,
z, A    B, s, u, z    u, F    H, s, z    .\/ , s, u, z    K, s, z    .<_ , s, u, z    ./\ , s, u, z    u, N    P, s, u, z    Q, s, u, z    U, s, u, z    W, s, u, z    X, s
Allowed substitution hints:    C( z, u, s)    D( z, u, s)    F( z, s)    H( u)    K( u)    N( z, s)    X( z, u)    Z( z, u, s)

Proof of Theorem cdleme29ex
StepHypRef Expression
1 simp11 1035 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp3 1007 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
3 cdleme26.b . . . 4  |-  B  =  ( Base `  K
)
4 cdleme26.l . . . 4  |-  .<_  =  ( le `  K )
5 cdleme26.j . . . 4  |-  .\/  =  ( join `  K )
6 cdleme26.m . . . 4  |-  ./\  =  ( meet `  K )
7 cdleme26.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdleme26.h . . . 4  |-  H  =  ( LHyp `  K
)
93, 4, 5, 6, 7, 8lhpmcvr2 33501 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X ) )
101, 2, 9syl2anc 665 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  (
s  .\/  ( X  ./\ 
W ) )  =  X ) )
11 simp11l 1116 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  K  e.  HL )
1211adantr 466 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  HL )
13 hllat 32841 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1412, 13syl 17 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  Lat )
15 simp11r 1117 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  W  e.  H )
1615adantr 466 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  W  e.  H
)
17 simpl12 1081 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
18 simpl13 1082 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
19 simpr 462 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  ( s  e.  A  /\  -.  s  .<_  W ) )
20 simpl2 1009 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  P  =/=  Q
)
21 cdleme27.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
22 cdleme27.f . . . . . . . . 9  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
23 cdleme27.z . . . . . . . . 9  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
24 cdleme27.n . . . . . . . . 9  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
25 cdleme27.d . . . . . . . . 9  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
26 cdleme27.c . . . . . . . . 9  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
273, 4, 5, 6, 7, 8, 21, 22, 23, 24, 25, 26cdleme27cl 33845 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  P  =/=  Q
) )  ->  C  e.  B )
2812, 16, 17, 18, 19, 20, 27syl222anc 1280 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  C  e.  B
)
29 simpl3l 1060 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  X  e.  B
)
303, 8lhpbase 33475 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  B )
3116, 30syl 17 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  W  e.  B
)
323, 6latmcl 16236 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
3314, 29, 31, 32syl3anc 1264 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  ( X  ./\  W )  e.  B )
343, 5latjcl 16235 . . . . . . 7  |-  ( ( K  e.  Lat  /\  C  e.  B  /\  ( X  ./\  W )  e.  B )  -> 
( C  .\/  ( X  ./\  W ) )  e.  B )
3514, 28, 33, 34syl3anc 1264 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  ->  ( C  .\/  ( X  ./\  W ) )  e.  B )
3635expr 618 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  s  e.  A )  ->  ( -.  s  .<_  W  -> 
( C  .\/  ( X  ./\  W ) )  e.  B ) )
3736adantrd 469 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  s  e.  A )  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  ( C  .\/  ( X  ./\  W ) )  e.  B ) )
3837ancld 555 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  s  e.  A )  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) ) )
3938reximdva 2834 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  ( E. s  e.  A  ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  /\  ( C 
.\/  ( X  ./\  W ) )  e.  B
) ) )
4010, 39mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2594   A.wral 2709   E.wrex 2710   ifcif 3849   class class class wbr 4361   ` cfv 5539   iota_crio 6205  (class class class)co 6244   Basecbs 15059   lecple 15135   joincjn 16127   meetcmee 16128   Latclat 16229   Atomscatm 32741   HLchlt 32828   LHypclh 33461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-op 3943  df-uni 4158  df-iun 4239  df-iin 4240  df-br 4362  df-opab 4421  df-mpt 4422  df-id 4706  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-1st 6746  df-2nd 6747  df-preset 16111  df-poset 16129  df-plt 16142  df-lub 16158  df-glb 16159  df-join 16160  df-meet 16161  df-p0 16223  df-p1 16224  df-lat 16230  df-clat 16292  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829  df-llines 32975  df-lplanes 32976  df-lvols 32977  df-lines 32978  df-psubsp 32980  df-pmap 32981  df-padd 33273  df-lhyp 33465
This theorem is referenced by:  cdleme29b  33854
  Copyright terms: Public domain W3C validator