Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28c Structured version   Unicode version

Theorem cdleme28c 33908
Description: Part of proof of Lemma E in [Crawley] p. 113. Eliminate the  s  =/=  t antecedent in cdleme28b 33907. TODO: FIX COMMENT (Contributed by NM, 6-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme27.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme27.z  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme27.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
cdleme27.d  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme27.c  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
cdleme27.g  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme27.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
cdleme27.e  |-  E  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
cdleme27.y  |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G
)
Assertion
Ref Expression
cdleme28c  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
Distinct variable groups:    t, s, u, z, A    B, s,
t, u, z    u, F    u, G    H, s,
t, z    .\/ , s, t, u, z    K, s, t, z    .<_ , s, t, u, z    ./\ , s,
t, u, z    t, N, u    O, s, u    P, s, t, u, z    Q, s, t, u, z    U, s, t, u, z    W, s, t, u, z    X, s, z, t
Allowed substitution hints:    C( z, u, t, s)    D( z, u, t, s)    E( z, u, t, s)    F( z, t, s)    G( z, t, s)    H( u)    K( u)    N( z, s)    O( z, t)    X( u)    Y( z, u, t, s)    Z( z, u, t, s)

Proof of Theorem cdleme28c
StepHypRef Expression
1 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
2 cdleme26.l . . . . 5  |-  .<_  =  ( le `  K )
3 cdleme26.j . . . . 5  |-  .\/  =  ( join `  K )
4 cdleme26.m . . . . 5  |-  ./\  =  ( meet `  K )
5 cdleme26.a . . . . 5  |-  A  =  ( Atoms `  K )
6 cdleme26.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 cdleme27.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme27.f . . . . 5  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
9 cdleme27.z . . . . 5  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
10 cdleme27.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
11 cdleme27.d . . . . 5  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
12 cdleme27.c . . . . 5  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
13 cdleme27.g . . . . 5  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
14 cdleme27.o . . . . 5  |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
15 cdleme27.e . . . . 5  |-  E  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
16 cdleme27.y . . . . 5  |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G
)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme27b 33904 . . . 4  |-  ( s  =  t  ->  C  =  Y )
1817oveq1d 6320 . . 3  |-  ( s  =  t  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
1918adantl 467 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =  t )  -> 
( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X  ./\  W ) ) )
20 simpl11 1080 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( K  e.  HL  /\  W  e.  H ) )
21 simpl12 1081 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
22 simpl13 1082 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
23 simpl21 1083 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  P  =/=  Q )
24 simpl22 1084 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
25 simpl23 1085 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
26 simpr 462 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  s  =/=  t )
27 simpl31 1086 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
s  .\/  ( X  ./\ 
W ) )  =  X )
28 simpl32 1087 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
t  .\/  ( X  ./\ 
W ) )  =  X )
2927, 28jca 534 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  (
( s  .\/  ( X  ./\  W ) )  =  X  /\  (
t  .\/  ( X  ./\ 
W ) )  =  X ) )
30 simpl33 1088 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme28b 33907 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  =/=  t  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
3220, 21, 22, 23, 24, 25, 26, 29, 30, 31syl333anc 1296 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  /\  s  =/=  t )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
3319, 32pm2.61dane 2738 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  .\/  ( X  ./\  W ) )  =  X  /\  ( t  .\/  ( X  ./\  W ) )  =  X  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( Y  .\/  ( X 
./\  W ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   ifcif 3911   class class class wbr 4423   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15120   lecple 15196   joincjn 16188   meetcmee 16189   Atomscatm 32798   HLchlt 32885   LHypclh 33518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-riotaBAD 32494
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7031  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-llines 33032  df-lplanes 33033  df-lvols 33034  df-lines 33035  df-psubsp 33037  df-pmap 33038  df-padd 33330  df-lhyp 33522
This theorem is referenced by:  cdleme28  33909
  Copyright terms: Public domain W3C validator