Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27N Structured version   Unicode version

Theorem cdleme27N 33906
Description: Part of proof of Lemma E in [Crawley] p. 113. Eliminate the  s  =/=  t antecedent in cdleme27a 33904. (Contributed by NM, 3-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme27.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme27.z  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme27.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
cdleme27.d  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme27.c  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
cdleme27.g  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme27.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
cdleme27.e  |-  E  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
cdleme27.y  |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G
)
Assertion
Ref Expression
cdleme27N  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  C  .<_  ( Y  .\/  V
) )
Distinct variable groups:    t, s, u, z, A    B, s,
t, u, z    u, F    u, G    H, s,
t, z    .\/ , s, t, u, z    K, s, t, z    .<_ , s, t, u, z    ./\ , s,
t, u, z    t, N, u    O, s, u    P, s, t, u, z    Q, s, t, u, z    U, s, t, u, z   
z, V    W, s,
t, u, z
Allowed substitution hints:    C( z, u, t, s)    D( z, u, t, s)    E( z, u, t, s)    F( z, t, s)    G( z, t, s)    H( u)    K( u)    N( z, s)    O( z, t)    V( u, t, s)    Y( z, u, t, s)    Z( z, u, t, s)

Proof of Theorem cdleme27N
StepHypRef Expression
1 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
2 cdleme26.l . . . . 5  |-  .<_  =  ( le `  K )
3 cdleme26.j . . . . 5  |-  .\/  =  ( join `  K )
4 cdleme26.m . . . . 5  |-  ./\  =  ( meet `  K )
5 cdleme26.a . . . . 5  |-  A  =  ( Atoms `  K )
6 cdleme26.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 cdleme27.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme27.f . . . . 5  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
9 cdleme27.z . . . . 5  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
10 cdleme27.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
11 cdleme27.d . . . . 5  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
12 cdleme27.c . . . . 5  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
13 cdleme27.g . . . . 5  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
14 cdleme27.o . . . . 5  |-  O  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
15 cdleme27.e . . . . 5  |-  E  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
16 cdleme27.y . . . . 5  |-  Y  =  if ( t  .<_  ( P  .\/  Q ) ,  E ,  G
)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme27b 33905 . . . 4  |-  ( s  =  t  ->  C  =  Y )
1817adantl 467 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =  t )  ->  C  =  Y )
19 simp11l 1116 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  HL )
20 hllat 32899 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
2119, 20syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  Lat )
22 simp11r 1117 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  W  e.  H )
23 simp21 1038 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
24 simp22 1039 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
25 simp23 1040 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
26 simp12 1036 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q )
271, 2, 3, 4, 5, 6, 7, 13, 9, 14, 15, 16cdleme27cl 33903 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  P  =/=  Q
) )  ->  Y  e.  B )
2819, 22, 23, 24, 25, 26, 27syl222anc 1280 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  Y  e.  B )
29 simp3rl 1078 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  e.  A )
301, 5atbase 32825 . . . . . 6  |-  ( V  e.  A  ->  V  e.  B )
3129, 30syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  e.  B )
321, 2, 3latlej1 16306 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  V  e.  B )  ->  Y  .<_  ( Y  .\/  V ) )
3321, 28, 31, 32syl3anc 1264 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  Y  .<_  ( Y  .\/  V
) )
3433adantr 466 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =  t )  ->  Y  .<_  ( Y  .\/  V ) )
3518, 34eqbrtrd 4444 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =  t )  ->  C  .<_  ( Y  .\/  V ) )
36 simpl11 1080 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  ( K  e.  HL  /\  W  e.  H ) )
37 simpl12 1081 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  P  =/=  Q )
38 simpl13 1082 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
39 simpl21 1083 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
40 simpl22 1084 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
41 simpl23 1085 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
42 simpr 462 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  s  =/=  t )
43 simpl3l 1060 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  s  .<_  ( t  .\/  V
) )
4442, 43jca 534 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  (
s  =/=  t  /\  s  .<_  ( t  .\/  V ) ) )
45 simpl3r 1061 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  ( V  e.  A  /\  V  .<_  W ) )
461, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme27a 33904 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( s  =/=  t  /\  s  .<_  ( t  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  C  .<_  ( Y  .\/  V ) )
4736, 37, 38, 39, 40, 41, 44, 45, 46syl332anc 1295 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  /\  s  =/=  t )  ->  C  .<_  ( Y  .\/  V
) )
4835, 47pm2.61dane 2738 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  =/=  Q  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( s  .<_  ( t 
.\/  V )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  C  .<_  ( Y  .\/  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   ifcif 3911   class class class wbr 4423   ` cfv 5601   iota_crio 6267  (class class class)co 6306   Basecbs 15121   lecple 15197   joincjn 16189   meetcmee 16190   Latclat 16291   Atomscatm 32799   HLchlt 32886   LHypclh 33519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598  ax-riotaBAD 32495
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6268  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-1st 6808  df-2nd 6809  df-undef 7032  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32712  df-ol 32714  df-oml 32715  df-covers 32802  df-ats 32803  df-atl 32834  df-cvlat 32858  df-hlat 32887  df-llines 33033  df-lplanes 33034  df-lvols 33035  df-lines 33036  df-psubsp 33038  df-pmap 33039  df-padd 33331  df-lhyp 33523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator