Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26fALTN Structured version   Unicode version

Theorem cdleme26fALTN 36485
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If t  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26f.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26f.f  |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme26f.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W
) ) )
cdleme26f.i  |-  I  =  ( iota_ u  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
Assertion
Ref Expression
cdleme26fALTN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F 
.\/  V ) )
Distinct variable groups:    u, t, A    t, B, u    t, H    t,  .\/ , u    t, K   
t,  .<_ , u    t,  ./\ , u    u, N    t, P, u   
t, Q, u    t, S, u    t, U, u   
t, W, u
Allowed substitution hints:    F( u, t)    H( u)    I( u, t)    K( u)    N( t)    V( u, t)

Proof of Theorem cdleme26fALTN
StepHypRef Expression
1 simp11 1024 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 1027 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 1028 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp23l 1115 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  e.  A
)
5 simp23r 1116 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  W )
6 simp12l 1107 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q
)
7 simp12r 1108 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  .<_  ( P 
.\/  Q ) )
8 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
9 cdleme26.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdleme26.j . . . . 5  |-  .\/  =  ( join `  K )
11 cdleme26.m . . . . 5  |-  ./\  =  ( meet `  K )
12 cdleme26.a . . . . 5  |-  A  =  ( Atoms `  K )
13 cdleme26.h . . . . 5  |-  H  =  ( LHyp `  K
)
14 cdleme26f.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdleme26f.f . . . . 5  |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdleme26f.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W
) ) )
17 cdleme26f.i . . . . 5  |-  I  =  ( iota_ u  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdleme25cl 36480 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  S  .<_  ( P  .\/  Q ) ) )  ->  I  e.  B )
191, 2, 3, 4, 5, 6, 7, 18syl322anc 1254 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  e.  B
)
20 simp13l 1109 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  t  e.  A
)
21 simp31 1030 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) ) )
22 fvex 5858 . . . . 5  |-  ( Base `  K )  e.  _V
238, 22eqeltri 2538 . . . 4  |-  B  e. 
_V
2423, 17riotasv 35087 . . 3  |-  ( ( I  e.  B  /\  t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  I  =  N )
2519, 20, 21, 24syl3anc 1226 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  =  N )
26 simp23 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
27 simp33 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
28 simp32 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) ) )
299, 10, 11, 12, 13, 14, 15, 16cdleme22f 36469 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  t  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
301, 2, 3, 26, 20, 27, 28, 29syl331anc 1251 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  .<_  ( F 
.\/  V ) )
3125, 30eqbrtrd 4459 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F 
.\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   _Vcvv 3106   class class class wbr 4439   ` cfv 5570   iota_crio 6231  (class class class)co 6270   Basecbs 14716   lecple 14791   joincjn 15772   meetcmee 15773   Atomscatm 35385   HLchlt 35472   LHypclh 36105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-riotaBAD 35081
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-undef 6994  df-preset 15756  df-poset 15774  df-plt 15787  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-p1 15869  df-lat 15875  df-clat 15937  df-oposet 35298  df-ol 35300  df-oml 35301  df-covers 35388  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473  df-llines 35619  df-lplanes 35620  df-lvols 35621  df-lines 35622  df-psubsp 35624  df-pmap 35625  df-padd 35917  df-lhyp 36109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator