Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26fALTN Unicode version

Theorem cdleme26fALTN 30844
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If t  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26f.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26f.f  |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme26f.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W
) ) )
cdleme26f.i  |-  I  =  ( iota_ u  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
Assertion
Ref Expression
cdleme26fALTN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F 
.\/  V ) )
Distinct variable groups:    u, t, A    t, B, u    t, H    t,  .\/ , u    t, K   
t,  .<_ , u    t,  ./\ , u    u, N    t, P, u   
t, Q, u    t, S, u    t, U, u   
t, W, u
Allowed substitution hints:    F( u, t)    H( u)    I( u, t)    K( u)    N( t)    V( u, t)

Proof of Theorem cdleme26fALTN
StepHypRef Expression
1 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp23l 1078 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  e.  A
)
5 simp23r 1079 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  W )
6 simp12l 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q
)
7 simp12r 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  .<_  ( P 
.\/  Q ) )
8 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
9 cdleme26.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdleme26.j . . . . 5  |-  .\/  =  ( join `  K )
11 cdleme26.m . . . . 5  |-  ./\  =  ( meet `  K )
12 cdleme26.a . . . . 5  |-  A  =  ( Atoms `  K )
13 cdleme26.h . . . . 5  |-  H  =  ( LHyp `  K
)
14 cdleme26f.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdleme26f.f . . . . 5  |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdleme26f.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W
) ) )
17 cdleme26f.i . . . . 5  |-  I  =  ( iota_ u  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdleme25cl 30839 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  S  .<_  ( P  .\/  Q ) ) )  ->  I  e.  B )
191, 2, 3, 4, 5, 6, 7, 18syl322anc 1212 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  e.  B
)
20 simp13l 1072 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  t  e.  A
)
21 simp31 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) ) )
22 fvex 5701 . . . . 5  |-  ( Base `  K )  e.  _V
238, 22eqeltri 2474 . . . 4  |-  B  e. 
_V
2423, 17riotasv 6556 . . 3  |-  ( ( I  e.  B  /\  t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  I  =  N )
2519, 20, 21, 24syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  =  N )
26 simp23 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
27 simp33 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
28 simp32 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) ) )
299, 10, 11, 12, 13, 14, 15, 16cdleme22f 30828 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  t  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
301, 2, 3, 26, 20, 27, 28, 29syl331anc 1209 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  .<_  ( F 
.\/  V ) )
3125, 30eqbrtrd 4192 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F 
.\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470
  Copyright terms: Public domain W3C validator