Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26fALTN Structured version   Unicode version

Theorem cdleme26fALTN 34329
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If t  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26f.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26f.f  |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme26f.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W
) ) )
cdleme26f.i  |-  I  =  ( iota_ u  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
Assertion
Ref Expression
cdleme26fALTN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F 
.\/  V ) )
Distinct variable groups:    u, t, A    t, B, u    t, H    t,  .\/ , u    t, K   
t,  .<_ , u    t,  ./\ , u    u, N    t, P, u   
t, Q, u    t, S, u    t, U, u   
t, W, u
Allowed substitution hints:    F( u, t)    H( u)    I( u, t)    K( u)    N( t)    V( u, t)

Proof of Theorem cdleme26fALTN
StepHypRef Expression
1 simp11 1018 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 1021 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 1022 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp23l 1109 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  e.  A
)
5 simp23r 1110 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  W )
6 simp12l 1101 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q
)
7 simp12r 1102 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  .<_  ( P 
.\/  Q ) )
8 cdleme26.b . . . . 5  |-  B  =  ( Base `  K
)
9 cdleme26.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdleme26.j . . . . 5  |-  .\/  =  ( join `  K )
11 cdleme26.m . . . . 5  |-  ./\  =  ( meet `  K )
12 cdleme26.a . . . . 5  |-  A  =  ( Atoms `  K )
13 cdleme26.h . . . . 5  |-  H  =  ( LHyp `  K
)
14 cdleme26f.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdleme26f.f . . . . 5  |-  F  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdleme26f.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  t )  ./\  W
) ) )
17 cdleme26f.i . . . . 5  |-  I  =  ( iota_ u  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdleme25cl 34324 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( P  =/= 
Q  /\  S  .<_  ( P  .\/  Q ) ) )  ->  I  e.  B )
191, 2, 3, 4, 5, 6, 7, 18syl322anc 1247 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  e.  B
)
20 simp13l 1103 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  t  e.  A
)
21 simp31 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) ) )
22 fvex 5808 . . . . 5  |-  ( Base `  K )  e.  _V
238, 22eqeltri 2538 . . . 4  |-  B  e. 
_V
2423, 17riotasv 32933 . . 3  |-  ( ( I  e.  B  /\  t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  I  =  N )
2519, 20, 21, 24syl3anc 1219 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  =  N )
26 simp23 1023 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
27 simp33 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
28 simp32 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) ) )
299, 10, 11, 12, 13, 14, 15, 16cdleme22f 34313 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  t  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
301, 2, 3, 26, 20, 27, 28, 29syl331anc 1244 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  .<_  ( F 
.\/  V ) )
3125, 30eqbrtrd 4419 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
) )  /\  (
t  e.  A  /\  -.  t  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( S  =/=  t  /\  S  .<_  ( t  .\/  V ) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  I  .<_  ( F 
.\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   A.wral 2798   _Vcvv 3076   class class class wbr 4399   ` cfv 5525   iota_crio 6159  (class class class)co 6199   Basecbs 14291   lecple 14363   joincjn 15232   meetcmee 15233   Atomscatm 33231   HLchlt 33318   LHypclh 33951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-riotaBAD 32927
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-undef 6901  df-poset 15234  df-plt 15246  df-lub 15262  df-glb 15263  df-join 15264  df-meet 15265  df-p0 15327  df-p1 15328  df-lat 15334  df-clat 15396  df-oposet 33144  df-ol 33146  df-oml 33147  df-covers 33234  df-ats 33235  df-atl 33266  df-cvlat 33290  df-hlat 33319  df-llines 33465  df-lplanes 33466  df-lvols 33467  df-lines 33468  df-psubsp 33470  df-pmap 33471  df-padd 33763  df-lhyp 33955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator