Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26ee Structured version   Unicode version

Theorem cdleme26ee 35156
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115.  F,  N,  O represent f(z), fz(s), fz(t) respectively. When t  \/ v = p  \/ q, fz(s)  <_ fz(t)  \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme26e.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme26e.f  |-  F  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme26e.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  z )  ./\  W
) ) )
cdleme26e.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  z )  ./\  W
) ) )
cdleme26e.i  |-  I  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme26e.e  |-  E  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
Assertion
Ref Expression
cdleme26ee  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  ->  I  .<_  ( E  .\/  V ) )
Distinct variable groups:    z, u, A    z, B, u    z, H    z,  .\/ , u    z, K   
z,  .<_ , u    z,  ./\ , u    u, N    u, O    z, P, u    z, Q, u   
z, S, u    z, T, u    z, U, u   
z, W, u    z, V
Allowed substitution hints:    E( z, u)    F( z, u)    H( u)    I( z, u)    K( u)    N( z)    O( z)    V( u)

Proof of Theorem cdleme26ee
StepHypRef Expression
1 simp11l 1107 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 simp11r 1108 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  ->  W  e.  H )
3 simp12 1027 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
4 simp13 1028 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
5 simp3l1 1101 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
6 cdleme26.l . . . 4  |-  .<_  =  ( le `  K )
7 cdleme26.j . . . 4  |-  .\/  =  ( join `  K )
8 cdleme26.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdleme26.h . . . 4  |-  H  =  ( LHyp `  K
)
106, 7, 8, 9cdlemb2 34837 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )
111, 2, 3, 4, 5, 10syl221anc 1239 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )
12 nfv 1683 . . 3  |-  F/ z ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )
13 cdleme26e.i . . . . 5  |-  I  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
14 nfra1 2845 . . . . . 6  |-  F/ z A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N )
15 nfcv 2629 . . . . . 6  |-  F/_ z B
1614, 15nfriota 6252 . . . . 5  |-  F/_ z
( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
1713, 16nfcxfr 2627 . . . 4  |-  F/_ z
I
18 nfcv 2629 . . . 4  |-  F/_ z  .<_
19 cdleme26e.e . . . . . 6  |-  E  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
20 nfra1 2845 . . . . . . 7  |-  F/ z A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O )
2120, 15nfriota 6252 . . . . . 6  |-  F/_ z
( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  O ) )
2219, 21nfcxfr 2627 . . . . 5  |-  F/_ z E
23 nfcv 2629 . . . . 5  |-  F/_ z  .\/
24 nfcv 2629 . . . . 5  |-  F/_ z V
2522, 23, 24nfov 6305 . . . 4  |-  F/_ z
( E  .\/  V
)
2617, 18, 25nfbr 4491 . . 3  |-  F/ z  I  .<_  ( E  .\/  V )
27 simp111 1125 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simp112 1126 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
29 simp113 1127 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
30 simp121 1128 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
31 simp122 1129 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
32 simp123 1130 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
33 simp13l 1111 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( P  =/=  Q  /\  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q ) ) )
34 simp13r 1112 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  ( T  .\/  V )  =  ( P  .\/  Q
) )
35 simp3r 1025 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  -.  z  .<_  ( P  .\/  Q ) )
3634, 35jca 532 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) ) )
37 simp2 997 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  z  e.  A )
38 simp3l 1024 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  -.  z  .<_  W )
3937, 38jca 532 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  (
z  e.  A  /\  -.  z  .<_  W ) )
40 cdleme26.b . . . . . 6  |-  B  =  ( Base `  K
)
41 cdleme26.m . . . . . 6  |-  ./\  =  ( meet `  K )
42 cdleme26e.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
43 cdleme26e.f . . . . . 6  |-  F  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
44 cdleme26e.n . . . . . 6  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  z )  ./\  W
) ) )
45 cdleme26e.o . . . . . 6  |-  O  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  z )  ./\  W
) ) )
4640, 6, 7, 41, 8, 9, 42, 43, 44, 45, 13, 19cdleme26e 35155 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  (
( T  .\/  V
)  =  ( P 
.\/  Q )  /\  -.  z  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  -.  z  .<_  W ) ) )  ->  I  .<_  ( E 
.\/  V ) )
4727, 28, 29, 30, 31, 32, 33, 36, 39, 46syl333anc 1260 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) ) )  ->  I  .<_  ( E  .\/  V
) )
48473exp 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  -> 
( z  e.  A  ->  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  I  .<_  ( E  .\/  V
) ) ) )
4912, 26, 48rexlimd 2947 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  -> 
( E. z  e.  A  ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  I  .<_  ( E  .\/  V
) ) )
5011, 49mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
( P  =/=  Q  /\  S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =  ( P  .\/  Q
) ) )  ->  I  .<_  ( E  .\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   class class class wbr 4447   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14486   lecple 14558   joincjn 15427   meetcmee 15428   Atomscatm 34060   HLchlt 34147   LHypclh 34780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-undef 6999  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784
This theorem is referenced by:  cdleme27a  35163
  Copyright terms: Public domain W3C validator