Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22gb Structured version   Unicode version

Theorem cdleme22gb 35307
Description: Utility lemma for Lemma E in [Crawley] p. 115. (Contributed by NM, 5-Dec-2012.)
Hypotheses
Ref Expression
cdleme18d.l  |-  .<_  =  ( le `  K )
cdleme18d.j  |-  .\/  =  ( join `  K )
cdleme18d.m  |-  ./\  =  ( meet `  K )
cdleme18d.a  |-  A  =  ( Atoms `  K )
cdleme18d.h  |-  H  =  ( LHyp `  K
)
cdleme18d.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme18d.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme18d.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme22.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme22gb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  G  e.  B )

Proof of Theorem cdleme22gb
StepHypRef Expression
1 cdleme18d.g . 2  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
2 simp1l 1020 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  K  e.  HL )
3 hllat 34377 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  K  e.  Lat )
5 simp2l 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  P  e.  A )
6 simp2r 1023 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  Q  e.  A )
7 cdleme22.b . . . . 5  |-  B  =  ( Base `  K
)
8 cdleme18d.j . . . . 5  |-  .\/  =  ( join `  K )
9 cdleme18d.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 34380 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
112, 5, 6, 10syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( P  .\/  Q )  e.  B
)
12 simp1 996 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp3r 1025 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  S  e.  A )
14 cdleme18d.l . . . . . 6  |-  .<_  =  ( le `  K )
15 cdleme18d.m . . . . . 6  |-  ./\  =  ( meet `  K )
16 cdleme18d.h . . . . . 6  |-  H  =  ( LHyp `  K
)
17 cdleme18d.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme18d.f . . . . . 6  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
1914, 8, 15, 9, 16, 17, 18, 7cdleme1b 35239 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  B )
2012, 5, 6, 13, 19syl13anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  F  e.  B )
21 simp3l 1024 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  R  e.  A )
227, 8, 9hlatjcl 34380 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
232, 21, 13, 22syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( R  .\/  S )  e.  B
)
24 simp1r 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  W  e.  H )
257, 16lhpbase 35011 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
2624, 25syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  W  e.  B )
277, 15latmcl 15542 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  B  /\  W  e.  B )  ->  (
( R  .\/  S
)  ./\  W )  e.  B )
284, 23, 26, 27syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  B )
297, 8latjcl 15541 . . . 4  |-  ( ( K  e.  Lat  /\  F  e.  B  /\  ( ( R  .\/  S )  ./\  W )  e.  B )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  B
)
304, 20, 28, 29syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( F  .\/  ( ( R  .\/  S )  ./\  W )
)  e.  B )
317, 15latmcl 15542 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  B
)  ->  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  e.  B )
324, 11, 30, 31syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  e.  B )
331, 32syl5eqel 2559 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )
)  ->  G  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5588  (class class class)co 6285   Basecbs 14493   lecple 14565   joincjn 15434   meetcmee 15435   Latclat 15535   Atomscatm 34277   HLchlt 34364   LHypclh 34997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-lat 15536  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-lhyp 35001
This theorem is referenced by:  cdleme25a  35366  cdleme25dN  35369
  Copyright terms: Public domain W3C validator