Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22g Structured version   Unicode version

Theorem cdleme22g 36217
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  G represent f(s), f(t) respectively. If s  <_ t  \/ v and  -. s  <_ p  \/ q, then f(s)  <_ f(t)  \/ v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22g.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme22g.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme22g.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme22g  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  .<_  ( G  .\/  V ) )

Proof of Theorem cdleme22g
StepHypRef Expression
1 simp11l 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  HL )
2 hllat 35231 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  Lat )
4 simp11 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp2l 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 simp2r 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
7 simp31 1032 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
8 simp133 1133 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q )
9 simp132 1132 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
10 cdleme22.l . . . . . . 7  |-  .<_  =  ( le `  K )
11 cdleme22.j . . . . . . 7  |-  .\/  =  ( join `  K )
12 cdleme22.m . . . . . . 7  |-  ./\  =  ( meet `  K )
13 cdleme22.a . . . . . . 7  |-  A  =  ( Atoms `  K )
14 cdleme22.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
15 cdleme22g.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
16 cdleme22g.f . . . . . . 7  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
1710, 11, 12, 13, 14, 15, 16cdleme3fa 36104 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
184, 5, 6, 7, 8, 9, 17syl132anc 1246 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  e.  A )
19 simp12 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
20 simp131 1131 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  T  .<_  ( P  .\/  Q
) )
21 cdleme22g.g . . . . . . 7  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
2210, 11, 12, 13, 14, 15, 21cdleme3fa 36104 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  T  .<_  ( P 
.\/  Q ) ) )  ->  G  e.  A )
234, 5, 6, 19, 8, 20, 22syl132anc 1246 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  G  e.  A )
24 eqid 2457 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2524, 11, 13hlatjcl 35234 . . . . 5  |-  ( ( K  e.  HL  /\  F  e.  A  /\  G  e.  A )  ->  ( F  .\/  G
)  e.  ( Base `  K ) )
261, 18, 23, 25syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( F  .\/  G )  e.  (
Base `  K )
)
27 simp11r 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  W  e.  H )
2824, 14lhpbase 35865 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2927, 28syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  W  e.  ( Base `  K )
)
3024, 10, 12latmle1 15833 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  .\/  G )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( F  .\/  G )  ./\  W )  .<_  ( F  .\/  G ) )
313, 26, 29, 30syl3anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( ( F  .\/  G )  ./\  W )  .<_  ( F  .\/  G ) )
32 simp33 1034 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
33 simp32 1033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  =/=  T  /\  S  .<_  ( T  .\/  V ) ) )
3410, 11, 12, 13, 14cdleme22d 36212 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )
354, 7, 19, 32, 33, 34syl131anc 1241 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W )
)
36 simp32l 1121 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  =/=  T )
378, 36jca 532 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  =/=  Q  /\  S  =/= 
T ) )
3810, 11, 12, 13, 14, 15, 16, 21cdleme16 36153 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) ) )  ->  ( ( S  .\/  T )  ./\  W )  =  ( ( F  .\/  G ) 
./\  W ) )
394, 5, 6, 7, 19, 37, 9, 20, 38syl332anc 1259 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( ( S  .\/  T )  ./\  W )  =  ( ( F  .\/  G ) 
./\  W ) )
4035, 39eqtr2d 2499 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( ( F  .\/  G )  ./\  W )  =  V )
4111, 13hlatjcom 35235 . . . 4  |-  ( ( K  e.  HL  /\  F  e.  A  /\  G  e.  A )  ->  ( F  .\/  G
)  =  ( G 
.\/  F ) )
421, 18, 23, 41syl3anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( F  .\/  G )  =  ( G  .\/  F ) )
4331, 40, 423brtr3d 4485 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  .<_  ( G  .\/  F ) )
44 hlcvl 35227 . . . 4  |-  ( K  e.  HL  ->  K  e.  CvLat )
451, 44syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  CvLat
)
46 simp33l 1123 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  e.  A )
47 simp33r 1124 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  .<_  W )
4810, 11, 12, 13, 14, 15, 21cdleme3 36105 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  T  .<_  ( P 
.\/  Q ) ) )  ->  -.  G  .<_  W )
494, 5, 6, 19, 8, 20, 48syl132anc 1246 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  G  .<_  W )
50 nbrne2 4474 . . . 4  |-  ( ( V  .<_  W  /\  -.  G  .<_  W )  ->  V  =/=  G
)
5147, 49, 50syl2anc 661 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  =/=  G )
5210, 11, 13cvlatexch1 35204 . . 3  |-  ( ( K  e.  CvLat  /\  ( V  e.  A  /\  F  e.  A  /\  G  e.  A )  /\  V  =/=  G
)  ->  ( V  .<_  ( G  .\/  F
)  ->  F  .<_  ( G  .\/  V ) ) )
5345, 46, 18, 23, 51, 52syl131anc 1241 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  .<_  ( G  .\/  F
)  ->  F  .<_  ( G  .\/  V ) ) )
5443, 53mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  .<_  ( G  .\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14644   lecple 14719   joincjn 15700   meetcmee 15701   Latclat 15802   Atomscatm 35131   CvLatclc 35133   HLchlt 35218   LHypclh 35851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-oposet 35044  df-ol 35046  df-oml 35047  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-llines 35365  df-lplanes 35366  df-lvols 35367  df-lines 35368  df-psubsp 35370  df-pmap 35371  df-padd 35663  df-lhyp 35855
This theorem is referenced by:  cdleme27a  36236
  Copyright terms: Public domain W3C validator