Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22f2 Unicode version

Theorem cdleme22f2 30829
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme22f 30828 with s and t swapped (this case is not mentioned by them). If s  <_ t  \/ v, then f(s)  <_ fs(t)  \/ v. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22f2.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme22f2.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme22f2.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme22f2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  .<_  ( N  .\/  V ) )

Proof of Theorem cdleme22f2
StepHypRef Expression
1 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 983 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp2r 984 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
41, 2, 33jca 1134 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
5 simp12 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
6 simp31l 1080 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  e.  A )
7 simp33 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( V  e.  A  /\  V  .<_  W ) )
8 simp32l 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  =/=  T )
98necomd 2650 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  =/=  S )
10 simp32r 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  .<_  ( T  .\/  V ) )
11 simp11l 1068 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  HL )
12 hlcvl 29842 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CvLat )
1311, 12syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  K  e.  CvLat
)
14 simp12l 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  e.  A )
15 simp33l 1084 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  e.  A )
16 simp33r 1085 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  V  .<_  W )
17 simp31r 1081 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  W )
18 nbrne2 4190 . . . . . . 7  |-  ( ( V  .<_  W  /\  -.  S  .<_  W )  ->  V  =/=  S
)
1918necomd 2650 . . . . . 6  |-  ( ( V  .<_  W  /\  -.  S  .<_  W )  ->  S  =/=  V
)
2016, 17, 19syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  S  =/=  V )
21 cdleme22.l . . . . . 6  |-  .<_  =  ( le `  K )
22 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
23 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
2421, 22, 23cvlatexch2 29820 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( S  e.  A  /\  T  e.  A  /\  V  e.  A )  /\  S  =/=  V
)  ->  ( S  .<_  ( T  .\/  V
)  ->  T  .<_  ( S  .\/  V ) ) )
2513, 6, 14, 15, 20, 24syl131anc 1197 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  .<_  ( T  .\/  V
)  ->  T  .<_  ( S  .\/  V ) ) )
2610, 25mpd 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  .<_  ( S  .\/  V ) )
27 cdleme22.m . . . 4  |-  ./\  =  ( meet `  K )
28 cdleme22.h . . . 4  |-  H  =  ( LHyp `  K
)
29 cdleme22f2.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
30 cdleme22f2.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
31 cdleme22f2.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( T  .\/  S )  ./\  W )
) )
3221, 22, 27, 23, 28, 29, 30, 31cdleme22f 30828 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  S  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( T  =/= 
S  /\  T  .<_  ( S  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
334, 5, 6, 7, 9, 26, 32syl132anc 1202 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  .<_  ( F  .\/  V ) )
34 simp31 993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
35 simp133 1094 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  P  =/=  Q )
36 simp132 1093 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  T  .<_  ( P  .\/  Q ) )
37 simp131 1092 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
3821, 22, 27, 23, 28, 29, 30, 31cdleme7ga 30730 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  N  e.  A )
394, 5, 34, 35, 36, 37, 38syl123anc 1201 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  e.  A )
4021, 22, 27, 23, 28, 29, 30cdleme3fa 30718 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
411, 2, 3, 34, 35, 37, 40syl132anc 1202 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  e.  A )
4221, 22, 27, 23, 28, 29, 30, 31cdleme7 30731 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  T  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  N  .<_  W )
434, 5, 34, 35, 36, 37, 42syl123anc 1201 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  -.  N  .<_  W )
44 nbrne2 4190 . . . . 5  |-  ( ( V  .<_  W  /\  -.  N  .<_  W )  ->  V  =/=  N
)
4544necomd 2650 . . . 4  |-  ( ( V  .<_  W  /\  -.  N  .<_  W )  ->  N  =/=  V
)
4616, 43, 45syl2anc 643 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  N  =/=  V )
4721, 22, 23cvlatexch2 29820 . . 3  |-  ( ( K  e.  CvLat  /\  ( N  e.  A  /\  F  e.  A  /\  V  e.  A )  /\  N  =/=  V
)  ->  ( N  .<_  ( F  .\/  V
)  ->  F  .<_  ( N  .\/  V ) ) )
4813, 39, 41, 15, 46, 47syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  ( N  .<_  ( F  .\/  V
)  ->  F  .<_  ( N  .\/  V ) ) )
4933, 48mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( -.  S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( P  .\/  Q )  /\  P  =/=  Q
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) )  /\  ( V  e.  A  /\  V  .<_  W ) ) )  ->  F  .<_  ( N  .\/  V ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   CvLatclc 29748   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme26f2ALTN  30846  cdleme26f2  30847
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470
  Copyright terms: Public domain W3C validator