Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22f Unicode version

Theorem cdleme22f 30828
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If s  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22f.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme22f.f  |-  F  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme22f.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme22f  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )

Proof of Theorem cdleme22f
StepHypRef Expression
1 cdleme22f.n . 2  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )
2 simp11l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  K  e.  HL )
3 hllat 29846 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  K  e.  Lat )
5 simp12l 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  P  e.  A )
6 simp13l 1072 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  Q  e.  A )
7 eqid 2404 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 29849 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
12 simp11r 1069 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  W  e.  H )
13 simp22 991 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  T  e.  A )
14 cdleme22.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 cdleme22.m . . . . . . 7  |-  ./\  =  ( meet `  K )
16 cdleme22.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
17 cdleme22f.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme22f.f . . . . . . 7  |-  F  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
1914, 8, 15, 9, 16, 17, 18, 7cdleme1b 30708 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  T  e.  A ) )  ->  F  e.  ( Base `  K ) )
202, 12, 5, 6, 13, 19syl23anc 1191 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  F  e.  ( Base `  K
) )
21 simp21l 1074 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  e.  A )
227, 8, 9hlatjcl 29849 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
232, 21, 13, 22syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( S  .\/  T )  e.  ( Base `  K
) )
247, 16lhpbase 30480 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2512, 24syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  W  e.  ( Base `  K
) )
267, 15latmcl 14435 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( S  .\/  T )  ./\  W )  e.  ( Base `  K ) )
274, 23, 25, 26syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  (
( S  .\/  T
)  ./\  W )  e.  ( Base `  K
) )
287, 8latjcl 14434 . . . . 5  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( S  .\/  T
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( S 
.\/  T )  ./\  W ) )  e.  (
Base `  K )
)
294, 20, 27, 28syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( F  .\/  ( ( S 
.\/  T )  ./\  W ) )  e.  (
Base `  K )
)
307, 14, 15latmle2 14461 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )  .<_  ( F 
.\/  ( ( S 
.\/  T )  ./\  W ) ) )
314, 11, 29, 30syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )  .<_  ( F 
.\/  ( ( S 
.\/  T )  ./\  W ) ) )
32 simp21 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
33 simp3l 985 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  =/=  T )
34 simp23l 1078 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  e.  A )
35 simp23r 1079 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  .<_  W )
36 simp3r 986 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  .<_  ( T  .\/  V
) )
378, 9hlatjcom 29850 . . . . . . . 8  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  ( T  .\/  V
)  =  ( V 
.\/  T ) )
382, 13, 34, 37syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( T  .\/  V )  =  ( V  .\/  T
) )
3936, 38breqtrd 4196 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  .<_  ( V  .\/  T
) )
40 hlcvl 29842 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CvLat )
412, 40syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  K  e.  CvLat )
4214, 8, 9cvlatexch2 29820 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( S  e.  A  /\  V  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .<_  ( V  .\/  T
)  ->  V  .<_  ( S  .\/  T ) ) )
4341, 21, 34, 13, 33, 42syl131anc 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( S  .<_  ( V  .\/  T )  ->  V  .<_  ( S  .\/  T ) ) )
4439, 43mpd 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  .<_  ( S  .\/  T
) )
45 eqid 2404 . . . . . 6  |-  ( ( S  .\/  T ) 
./\  W )  =  ( ( S  .\/  T )  ./\  W )
4614, 8, 15, 9, 16, 45cdleme22aa 30821 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  S  =/=  T )  /\  ( V  e.  A  /\  V  .<_  W  /\  V  .<_  ( S  .\/  T ) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )
472, 12, 32, 13, 33, 34, 35, 44, 46syl233anc 1213 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  =  ( ( S 
.\/  T )  ./\  W ) )
4847oveq2d 6056 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( F  .\/  V )  =  ( F  .\/  (
( S  .\/  T
)  ./\  W )
) )
4931, 48breqtrrd 4198 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )  .<_  ( F 
.\/  V ) )
501, 49syl5eqbr 4205 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Latclat 14429   Atomscatm 29746   CvLatclc 29748   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme22f2  30829  cdleme26fALTN  30844  cdleme26f  30845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-lhyp 30470
  Copyright terms: Public domain W3C validator