Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22d Structured version   Unicode version

Theorem cdleme22d 33987
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 9th line on p. 115. (Contributed by NM, 4-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdleme22d  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )

Proof of Theorem cdleme22d
StepHypRef Expression
1 simp3r 1017 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  .<_  ( T  .\/  V ) )
2 simp1l 1012 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  HL )
3 simp22l 1107 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  T  e.  A )
4 simp23l 1109 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  e.  A )
5 cdleme22.l . . . . . . . 8  |-  .<_  =  ( le `  K )
6 cdleme22.j . . . . . . . 8  |-  .\/  =  ( join `  K )
7 cdleme22.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
85, 6, 7hlatlej1 33019 . . . . . . 7  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  T  .<_  ( T  .\/  V ) )
92, 3, 4, 8syl3anc 1218 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  T  .<_  ( T  .\/  V ) )
10 hllat 33008 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
112, 10syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  Lat )
12 simp21l 1105 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  e.  A )
13 eqid 2443 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
1413, 7atbase 32934 . . . . . . . 8  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1512, 14syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  e.  ( Base `  K ) )
1613, 7atbase 32934 . . . . . . . 8  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
173, 16syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  T  e.  ( Base `  K ) )
1813, 6, 7hlatjcl 33011 . . . . . . . 8  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  ( T  .\/  V
)  e.  ( Base `  K ) )
192, 3, 4, 18syl3anc 1218 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( T  .\/  V
)  e.  ( Base `  K ) )
2013, 5, 6latjle12 15232 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  ( T  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( T  .\/  V )  /\  T  .<_  ( T 
.\/  V ) )  <-> 
( S  .\/  T
)  .<_  ( T  .\/  V ) ) )
2111, 15, 17, 19, 20syl13anc 1220 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .<_  ( T  .\/  V )  /\  T  .<_  ( T 
.\/  V ) )  <-> 
( S  .\/  T
)  .<_  ( T  .\/  V ) ) )
221, 9, 21mpbi2and 912 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( S  .\/  T
)  .<_  ( T  .\/  V ) )
2313, 6, 7hlatjcl 33011 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
242, 12, 3, 23syl3anc 1218 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
25 simp1r 1013 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  W  e.  H )
26 cdleme22.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2713, 26lhpbase 33642 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2825, 27syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  W  e.  ( Base `  K ) )
29 cdleme22.m . . . . . . 7  |-  ./\  =  ( meet `  K )
3013, 5, 29latmlem1 15251 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( S  .\/  T )  e.  ( Base `  K )  /\  ( T  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( S  .\/  T
)  .<_  ( T  .\/  V )  ->  ( ( S  .\/  T )  ./\  W )  .<_  ( ( T  .\/  V )  ./\  W ) ) )
3111, 24, 19, 28, 30syl13anc 1220 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  .<_  ( T  .\/  V )  ->  (
( S  .\/  T
)  ./\  W )  .<_  ( ( T  .\/  V )  ./\  W )
) )
3222, 31mpd 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  .<_  ( ( T  .\/  V )  ./\  W )
)
33 simp1 988 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
34 simp22 1022 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( T  e.  A  /\  -.  T  .<_  W ) )
35 eqid 2443 . . . . . . . 8  |-  ( 0.
`  K )  =  ( 0. `  K
)
365, 29, 35, 7, 26lhpmat 33674 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  -> 
( T  ./\  W
)  =  ( 0.
`  K ) )
3733, 34, 36syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( T  ./\  W
)  =  ( 0.
`  K ) )
3837oveq1d 6106 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( T  ./\  W )  .\/  V )  =  ( ( 0.
`  K )  .\/  V ) )
39 simp23r 1110 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  .<_  W )
4013, 5, 6, 29, 7atmod4i1 33510 . . . . . 6  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  T  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  V  .<_  W )  -> 
( ( T  ./\  W )  .\/  V )  =  ( ( T 
.\/  V )  ./\  W ) )
412, 4, 17, 28, 39, 40syl131anc 1231 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( T  ./\  W )  .\/  V )  =  ( ( T 
.\/  V )  ./\  W ) )
42 hlol 33006 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
432, 42syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  OL )
4413, 7atbase 32934 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
454, 44syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  e.  ( Base `  K ) )
4613, 6, 35olj02 32871 . . . . . 6  |-  ( ( K  e.  OL  /\  V  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
4743, 45, 46syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
4838, 41, 473eqtr3d 2483 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( T  .\/  V )  ./\  W )  =  V )
4932, 48breqtrd 4316 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  .<_  V )
50 hlatl 33005 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
512, 50syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  AtLat )
52 simp21r 1106 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  -.  S  .<_  W )
53 simp3l 1016 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  =/=  T )
545, 6, 29, 7, 26lhpat 33687 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  S  =/=  T ) )  ->  ( ( S 
.\/  T )  ./\  W )  e.  A )
552, 25, 12, 52, 3, 53, 54syl222anc 1234 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  e.  A )
565, 7atcmp 32956 . . . 4  |-  ( ( K  e.  AtLat  /\  (
( S  .\/  T
)  ./\  W )  e.  A  /\  V  e.  A )  ->  (
( ( S  .\/  T )  ./\  W )  .<_  V  <->  ( ( S 
.\/  T )  ./\  W )  =  V ) )
5751, 55, 4, 56syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( ( S 
.\/  T )  ./\  W )  .<_  V  <->  ( ( S  .\/  T )  ./\  W )  =  V ) )
5849, 57mpbid 210 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  =  V )
5958eqcomd 2448 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   Basecbs 14174   lecple 14245   joincjn 15114   meetcmee 15115   0.cp0 15207   Latclat 15215   OLcol 32819   Atomscatm 32908   AtLatcal 32909   HLchlt 32995   LHypclh 33628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-p1 15210  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-psubsp 33147  df-pmap 33148  df-padd 33440  df-lhyp 33632
This theorem is referenced by:  cdleme22g  33992
  Copyright terms: Public domain W3C validator