Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22d Unicode version

Theorem cdleme22d 30825
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 9th line on p. 115. (Contributed by NM, 4-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdleme22d  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )

Proof of Theorem cdleme22d
StepHypRef Expression
1 simp3r 986 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  .<_  ( T  .\/  V ) )
2 simp1l 981 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  HL )
3 simp22l 1076 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  T  e.  A )
4 simp23l 1078 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  e.  A )
5 cdleme22.l . . . . . . . 8  |-  .<_  =  ( le `  K )
6 cdleme22.j . . . . . . . 8  |-  .\/  =  ( join `  K )
7 cdleme22.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
85, 6, 7hlatlej1 29857 . . . . . . 7  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  T  .<_  ( T  .\/  V ) )
92, 3, 4, 8syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  T  .<_  ( T  .\/  V ) )
10 hllat 29846 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
112, 10syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  Lat )
12 simp21l 1074 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  e.  A )
13 eqid 2404 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
1413, 7atbase 29772 . . . . . . . 8  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1512, 14syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  e.  ( Base `  K ) )
1613, 7atbase 29772 . . . . . . . 8  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
173, 16syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  T  e.  ( Base `  K ) )
1813, 6, 7hlatjcl 29849 . . . . . . . 8  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  ( T  .\/  V
)  e.  ( Base `  K ) )
192, 3, 4, 18syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( T  .\/  V
)  e.  ( Base `  K ) )
2013, 5, 6latjle12 14446 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  ( T  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( T  .\/  V )  /\  T  .<_  ( T 
.\/  V ) )  <-> 
( S  .\/  T
)  .<_  ( T  .\/  V ) ) )
2111, 15, 17, 19, 20syl13anc 1186 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .<_  ( T  .\/  V )  /\  T  .<_  ( T 
.\/  V ) )  <-> 
( S  .\/  T
)  .<_  ( T  .\/  V ) ) )
221, 9, 21mpbi2and 888 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( S  .\/  T
)  .<_  ( T  .\/  V ) )
2313, 6, 7hlatjcl 29849 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
242, 12, 3, 23syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
25 simp1r 982 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  W  e.  H )
26 cdleme22.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2713, 26lhpbase 30480 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2825, 27syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  W  e.  ( Base `  K ) )
29 cdleme22.m . . . . . . 7  |-  ./\  =  ( meet `  K )
3013, 5, 29latmlem1 14465 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( S  .\/  T )  e.  ( Base `  K )  /\  ( T  .\/  V )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( S  .\/  T
)  .<_  ( T  .\/  V )  ->  ( ( S  .\/  T )  ./\  W )  .<_  ( ( T  .\/  V )  ./\  W ) ) )
3111, 24, 19, 28, 30syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  .<_  ( T  .\/  V )  ->  (
( S  .\/  T
)  ./\  W )  .<_  ( ( T  .\/  V )  ./\  W )
) )
3222, 31mpd 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  .<_  ( ( T  .\/  V )  ./\  W )
)
33 simp1 957 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
34 simp22 991 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( T  e.  A  /\  -.  T  .<_  W ) )
35 eqid 2404 . . . . . . . 8  |-  ( 0.
`  K )  =  ( 0. `  K
)
365, 29, 35, 7, 26lhpmat 30512 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  -> 
( T  ./\  W
)  =  ( 0.
`  K ) )
3733, 34, 36syl2anc 643 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( T  ./\  W
)  =  ( 0.
`  K ) )
3837oveq1d 6055 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( T  ./\  W )  .\/  V )  =  ( ( 0.
`  K )  .\/  V ) )
39 simp23r 1079 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  .<_  W )
4013, 5, 6, 29, 7atmod4i1 30348 . . . . . 6  |-  ( ( K  e.  HL  /\  ( V  e.  A  /\  T  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  V  .<_  W )  -> 
( ( T  ./\  W )  .\/  V )  =  ( ( T 
.\/  V )  ./\  W ) )
412, 4, 17, 28, 39, 40syl131anc 1197 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( T  ./\  W )  .\/  V )  =  ( ( T 
.\/  V )  ./\  W ) )
42 hlol 29844 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
432, 42syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  OL )
4413, 7atbase 29772 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
454, 44syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  e.  ( Base `  K ) )
4613, 6, 35olj02 29709 . . . . . 6  |-  ( ( K  e.  OL  /\  V  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
4743, 45, 46syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( 0. `  K )  .\/  V
)  =  V )
4838, 41, 473eqtr3d 2444 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( T  .\/  V )  ./\  W )  =  V )
4932, 48breqtrd 4196 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  .<_  V )
50 hlatl 29843 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
512, 50syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  K  e.  AtLat )
52 simp21r 1075 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  -.  S  .<_  W )
53 simp3l 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  S  =/=  T )
545, 6, 29, 7, 26lhpat 30525 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  S  =/=  T ) )  ->  ( ( S 
.\/  T )  ./\  W )  e.  A )
552, 25, 12, 52, 3, 53, 54syl222anc 1200 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  e.  A )
565, 7atcmp 29794 . . . 4  |-  ( ( K  e.  AtLat  /\  (
( S  .\/  T
)  ./\  W )  e.  A  /\  V  e.  A )  ->  (
( ( S  .\/  T )  ./\  W )  .<_  V  <->  ( ( S 
.\/  T )  ./\  W )  =  V ) )
5751, 55, 4, 56syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( ( S 
.\/  T )  ./\  W )  .<_  V  <->  ( ( S  .\/  T )  ./\  W )  =  V ) )
5849, 57mpbid 202 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  -> 
( ( S  .\/  T )  ./\  W )  =  V )
5958eqcomd 2409 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/=  T  /\  S  .<_  ( T  .\/  V
) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   0.cp0 14421   Latclat 14429   OLcol 29657   Atomscatm 29746   AtLatcal 29747   HLchlt 29833   LHypclh 30466
This theorem is referenced by:  cdleme22g  30830
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470
  Copyright terms: Public domain W3C validator