Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22cN Structured version   Unicode version

Theorem cdleme22cN 33986
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t  \/ v =/= p  \/ q and s  <_ p  \/ q implies  -. v  <_ p  \/ q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdleme22cN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  V  .<_  ( P 
.\/  Q ) )

Proof of Theorem cdleme22cN
StepHypRef Expression
1 simp11l 1099 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 hllat 33008 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  Lat )
4 simp12l 1101 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  P  e.  A )
5 simp13 1020 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  Q  e.  A )
6 eqid 2443 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
8 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
96, 7, 8hlatjcl 33011 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
101, 4, 5, 9syl3anc 1218 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
11 simp11r 1100 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  W  e.  H )
12 cdleme22.h . . . . . 6  |-  H  =  ( LHyp `  K
)
136, 12lhpbase 33642 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1411, 13syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  W  e.  ( Base `  K ) )
15 cdleme22.l . . . . 5  |-  .<_  =  ( le `  K )
16 cdleme22.m . . . . 5  |-  ./\  =  ( meet `  K )
176, 15, 16latmle2 15247 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
183, 10, 14, 17syl3anc 1218 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  W )
19 simp21r 1106 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  S  .<_  W )
20 nbrne2 4310 . . 3  |-  ( ( ( ( P  .\/  Q )  ./\  W )  .<_  W  /\  -.  S  .<_  W )  ->  (
( P  .\/  Q
)  ./\  W )  =/=  S )
2118, 19, 20syl2anc 661 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  =/=  S )
22 simp32l 1113 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  .<_  ( T  .\/  V ) )
2322adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( T  .\/  V
) )
241adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  K  e.  HL )
2511adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  W  e.  H )
26 simpl12 1064 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
27 simpl13 1065 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
28 simp31l 1111 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
2928adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  P  =/=  Q )
30 simp23l 1109 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  V  e.  A )
3130adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  e.  A )
32 simp23r 1110 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  V  .<_  W )
3332adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  .<_  W )
34 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  .<_  ( P  .\/  Q
) )
35 eqid 2443 . . . . . . . . . . . 12  |-  ( ( P  .\/  Q ) 
./\  W )  =  ( ( P  .\/  Q )  ./\  W )
3615, 7, 16, 8, 12, 35cdleme22aa 33983 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  V  .<_  W  /\  V  .<_  ( P  .\/  Q ) ) )  ->  V  =  ( ( P  .\/  Q )  ./\  W ) )
3724, 25, 26, 27, 29, 31, 33, 34, 36syl233anc 1247 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  =  ( ( P 
.\/  Q )  ./\  W ) )
3837oveq2d 6107 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  ( T  .\/  V )  =  ( T  .\/  (
( P  .\/  Q
)  ./\  W )
) )
3923, 38breqtrd 4316 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( T  .\/  (
( P  .\/  Q
)  ./\  W )
) )
40 simp32r 1114 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  .<_  ( P  .\/  Q ) )
4140adantr 465 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( P  .\/  Q
) )
42 simp21l 1105 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  e.  A )
436, 8atbase 32934 . . . . . . . . . . 11  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
4442, 43syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  e.  ( Base `  K ) )
45 simp22 1022 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  T  e.  A )
46 simp12r 1102 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  P  .<_  W )
4715, 7, 16, 8, 12lhpat 33687 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  ( ( P 
.\/  Q )  ./\  W )  e.  A )
481, 11, 4, 46, 5, 28, 47syl222anc 1234 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  e.  A )
496, 7, 8hlatjcl 33011 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  T  e.  A  /\  ( ( P  .\/  Q )  ./\  W )  e.  A )  ->  ( T  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
501, 45, 48, 49syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  e.  ( Base `  K ) )
516, 15, 16latlem12 15248 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  ( T  .\/  ( ( P  .\/  Q ) 
./\  W ) )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( S  .<_  ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  /\  S  .<_  ( P  .\/  Q
) )  <->  S  .<_  ( ( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) ) ) )
523, 44, 50, 10, 51syl13anc 1220 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( S  .<_  ( T  .\/  ( ( P  .\/  Q ) 
./\  W ) )  /\  S  .<_  ( P 
.\/  Q ) )  <-> 
S  .<_  ( ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  ( P  .\/  Q ) ) ) )
5352adantr 465 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  (
( S  .<_  ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  /\  S  .<_  ( P  .\/  Q
) )  <->  S  .<_  ( ( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) ) ) )
5439, 41, 53mpbi2and 912 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( ( T  .\/  ( ( P  .\/  Q )  ./\  W )
)  ./\  ( P  .\/  Q ) ) )
55 simp31r 1112 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  =/=  T )
5642, 45, 553jca 1168 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )
57 simp33 1026 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( T  .\/  V
)  =/=  ( P 
.\/  Q ) )
5857, 22, 403jca 1168 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) )
5915, 7, 16, 8, 12cdleme22b 33985 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
601, 56, 4, 5, 28, 30, 58, 59syl232anc 1245 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
61 hlatl 33005 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  AtLat )
621, 61syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  AtLat )
63 eqid 2443 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
646, 15, 16, 63, 8atnle 32962 . . . . . . . . . . . 12  |-  ( ( K  e.  AtLat  /\  T  e.  A  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( -.  T  .<_  ( P 
.\/  Q )  <->  ( T  ./\  ( P  .\/  Q
) )  =  ( 0. `  K ) ) )
6562, 45, 10, 64syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( -.  T  .<_  ( P  .\/  Q )  <-> 
( T  ./\  ( P  .\/  Q ) )  =  ( 0. `  K ) ) )
6660, 65mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( T  ./\  ( P  .\/  Q ) )  =  ( 0. `  K ) )
6766oveq1d 6106 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  ./\  ( P  .\/  Q ) )  .\/  ( ( P  .\/  Q ) 
./\  W ) )  =  ( ( 0.
`  K )  .\/  ( ( P  .\/  Q )  ./\  W )
) )
686, 8atbase 32934 . . . . . . . . . . 11  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
6945, 68syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  T  e.  ( Base `  K ) )
706, 15, 16latmle1 15246 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
713, 10, 14, 70syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q
) )
726, 15, 7, 16, 8atmod4i1 33510 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( P 
.\/  Q )  ./\  W )  e.  A  /\  T  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  (
( P  .\/  Q
)  ./\  W )  .<_  ( P  .\/  Q
) )  ->  (
( T  ./\  ( P  .\/  Q ) ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) ) )
731, 48, 69, 10, 71, 72syl131anc 1231 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  ./\  ( P  .\/  Q ) )  .\/  ( ( P  .\/  Q ) 
./\  W ) )  =  ( ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  ( P  .\/  Q ) ) )
74 hlol 33006 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
751, 74syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  OL )
766, 16latmcl 15222 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
773, 10, 14, 76syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) )
786, 7, 63olj02 32871 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) )  ->  (
( 0. `  K
)  .\/  ( ( P  .\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  W )
)
7975, 77, 78syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( 0. `  K )  .\/  (
( P  .\/  Q
)  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  W ) )
8067, 73, 793eqtr3d 2483 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  .\/  ( ( P  .\/  Q )  ./\  W )
)  ./\  ( P  .\/  Q ) )  =  ( ( P  .\/  Q )  ./\  W )
)
8180adantr 465 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  (
( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) )  =  ( ( P  .\/  Q )  ./\  W )
)
8254, 81breqtrd 4316 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( ( P  .\/  Q )  ./\  W )
)
8315, 8atcmp 32956 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  S  e.  A  /\  (
( P  .\/  Q
)  ./\  W )  e.  A )  ->  ( S  .<_  ( ( P 
.\/  Q )  ./\  W )  <->  S  =  (
( P  .\/  Q
)  ./\  W )
) )
8462, 42, 48, 83syl3anc 1218 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( S  .<_  ( ( P  .\/  Q ) 
./\  W )  <->  S  =  ( ( P  .\/  Q )  ./\  W )
) )
8584adantr 465 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  ( S  .<_  ( ( P 
.\/  Q )  ./\  W )  <->  S  =  (
( P  .\/  Q
)  ./\  W )
) )
8682, 85mpbid 210 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  =  ( ( P 
.\/  Q )  ./\  W ) )
8786eqcomd 2448 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  (
( P  .\/  Q
)  ./\  W )  =  S )
8887ex 434 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( V  .<_  ( P 
.\/  Q )  -> 
( ( P  .\/  Q )  ./\  W )  =  S ) )
8988necon3ad 2644 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( ( P 
.\/  Q )  ./\  W )  =/=  S  ->  -.  V  .<_  ( P 
.\/  Q ) ) )
9021, 89mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  V  .<_  ( P 
.\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   Basecbs 14174   lecple 14245   joincjn 15114   meetcmee 15115   0.cp0 15207   Latclat 15215   OLcol 32819   Atomscatm 32908   AtLatcal 32909   HLchlt 32995   LHypclh 33628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-p1 15210  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-llines 33142  df-psubsp 33147  df-pmap 33148  df-padd 33440  df-lhyp 33632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator