Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22b Structured version   Unicode version

Theorem cdleme22b 33825
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t  \/ v =/= p  \/ q and s  <_ p  \/ q implies  -. t  <_ p  \/ q. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdleme22b  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )

Proof of Theorem cdleme22b
StepHypRef Expression
1 simp1l 1012 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  K  e.  HL )
2 simp1r1 1084 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  S  e.  A )
3 simp1r2 1085 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  T  e.  A )
4 simp1r3 1086 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  S  =/=  T )
5 cdleme22.j . . . . . . 7  |-  .\/  =  ( join `  K )
6 cdleme22.a . . . . . . 7  |-  A  =  ( Atoms `  K )
7 eqid 2438 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
85, 6, 7llni2 32996 . . . . . 6  |-  ( ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .\/  T )  e.  (
LLines `  K ) )
91, 2, 3, 4, 8syl31anc 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( S  .\/  T
)  e.  ( LLines `  K ) )
106, 7llnneat 32998 . . . . 5  |-  ( ( K  e.  HL  /\  ( S  .\/  T )  e.  ( LLines `  K
) )  ->  -.  ( S  .\/  T )  e.  A )
111, 9, 10syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  -.  ( S  .\/  T
)  e.  A )
12 eqid 2438 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
1312, 7llnn0 33000 . . . . 5  |-  ( ( K  e.  HL  /\  ( S  .\/  T )  e.  ( LLines `  K
) )  ->  ( S  .\/  T )  =/=  ( 0. `  K
) )
141, 9, 13syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( S  .\/  T
)  =/=  ( 0.
`  K ) )
1511, 14jca 532 . . 3  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( -.  ( S 
.\/  T )  e.  A  /\  ( S 
.\/  T )  =/=  ( 0. `  K
) ) )
16 df-ne 2603 . . . . 5  |-  ( ( S  .\/  T )  =/=  ( 0. `  K )  <->  -.  ( S  .\/  T )  =  ( 0. `  K
) )
1716anbi2i 694 . . . 4  |-  ( ( -.  ( S  .\/  T )  e.  A  /\  ( S  .\/  T )  =/=  ( 0. `  K ) )  <->  ( -.  ( S  .\/  T )  e.  A  /\  -.  ( S  .\/  T )  =  ( 0. `  K ) ) )
18 pm4.56 495 . . . 4  |-  ( ( -.  ( S  .\/  T )  e.  A  /\  -.  ( S  .\/  T
)  =  ( 0.
`  K ) )  <->  -.  ( ( S  .\/  T )  e.  A  \/  ( S  .\/  T )  =  ( 0. `  K ) ) )
1917, 18bitri 249 . . 3  |-  ( ( -.  ( S  .\/  T )  e.  A  /\  ( S  .\/  T )  =/=  ( 0. `  K ) )  <->  -.  (
( S  .\/  T
)  e.  A  \/  ( S  .\/  T )  =  ( 0. `  K ) ) )
2015, 19sylib 196 . 2  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  -.  ( ( S  .\/  T )  e.  A  \/  ( S  .\/  T )  =  ( 0. `  K ) ) )
21 simp3r2 1097 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  S  .<_  ( T  .\/  V ) )
22 simp3l 1016 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  V  e.  A )
23 cdleme22.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
2423, 5, 6hlatlej1 32859 . . . . . . . 8  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  T  .<_  ( T  .\/  V ) )
251, 3, 22, 24syl3anc 1218 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  T  .<_  ( T  .\/  V ) )
26 hllat 32848 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
271, 26syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  K  e.  Lat )
28 eqid 2438 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
2928, 6atbase 32774 . . . . . . . . 9  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
302, 29syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  S  e.  ( Base `  K ) )
3128, 6atbase 32774 . . . . . . . . 9  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
323, 31syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  T  e.  ( Base `  K ) )
3328, 5, 6hlatjcl 32851 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  ( T  .\/  V
)  e.  ( Base `  K ) )
341, 3, 22, 33syl3anc 1218 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( T  .\/  V
)  e.  ( Base `  K ) )
3528, 23, 5latjle12 15224 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  ( T  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( T  .\/  V )  /\  T  .<_  ( T 
.\/  V ) )  <-> 
( S  .\/  T
)  .<_  ( T  .\/  V ) ) )
3627, 30, 32, 34, 35syl13anc 1220 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( S  .<_  ( T  .\/  V )  /\  T  .<_  ( T 
.\/  V ) )  <-> 
( S  .\/  T
)  .<_  ( T  .\/  V ) ) )
3721, 25, 36mpbi2and 912 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( S  .\/  T
)  .<_  ( T  .\/  V ) )
3837adantr 465 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  ( S  .\/  T )  .<_  ( T  .\/  V ) )
39 simp3r3 1098 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  S  .<_  ( P  .\/  Q ) )
4039adantr 465 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( P  .\/  Q
) )
41 simpr 461 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  T  .<_  ( P  .\/  Q
) )
42 simp21 1021 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  P  e.  A )
43 simp22 1022 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  Q  e.  A )
4428, 5, 6hlatjcl 32851 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
451, 42, 43, 44syl3anc 1218 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
4628, 23, 5latjle12 15224 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( P  .\/  Q )  /\  T  .<_  ( P 
.\/  Q ) )  <-> 
( S  .\/  T
)  .<_  ( P  .\/  Q ) ) )
4727, 30, 32, 45, 46syl13anc 1220 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( S  .<_  ( P  .\/  Q )  /\  T  .<_  ( P 
.\/  Q ) )  <-> 
( S  .\/  T
)  .<_  ( P  .\/  Q ) ) )
4847adantr 465 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  (
( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( P  .\/  Q ) )  <->  ( S  .\/  T )  .<_  ( P 
.\/  Q ) ) )
4940, 41, 48mpbi2and 912 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  ( S  .\/  T )  .<_  ( P  .\/  Q ) )
5028, 5, 6hlatjcl 32851 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
511, 2, 3, 50syl3anc 1218 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
52 cdleme22.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
5328, 23, 52latlem12 15240 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( S  .\/  T )  e.  ( Base `  K )  /\  ( T  .\/  V )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( ( S  .\/  T )  .<_  ( T  .\/  V )  /\  ( S  .\/  T )  .<_  ( P  .\/  Q ) )  <->  ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )
5427, 51, 34, 45, 53syl13anc 1220 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( ( S 
.\/  T )  .<_  ( T  .\/  V )  /\  ( S  .\/  T )  .<_  ( P  .\/  Q ) )  <->  ( S  .\/  T )  .<_  ( ( T  .\/  V ) 
./\  ( P  .\/  Q ) ) ) )
5554adantr 465 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  (
( ( S  .\/  T )  .<_  ( T  .\/  V )  /\  ( S  .\/  T )  .<_  ( P  .\/  Q ) )  <->  ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )
5638, 49, 55mpbi2and 912 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  T  .<_  ( P  .\/  Q ) )  ->  ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) )
5756ex 434 . . 3  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( T  .<_  ( P 
.\/  Q )  -> 
( S  .\/  T
)  .<_  ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) ) ) )
58 hlop 32847 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OP )
591, 58syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  K  e.  OP )
6059adantr 465 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  K  e.  OP )
6151adantr 465 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  ( S  .\/  T )  e.  (
Base `  K )
)
62 simprl 755 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  e.  A )
63 simprr 756 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  ( S  .\/  T )  .<_  ( ( T  .\/  V ) 
./\  ( P  .\/  Q ) ) )
6428, 23, 12, 6leat3 32780 . . . . . 6  |-  ( ( ( K  e.  OP  /\  ( S  .\/  T
)  e.  ( Base `  K )  /\  (
( T  .\/  V
)  ./\  ( P  .\/  Q ) )  e.  A )  /\  ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) )  ->  ( ( S 
.\/  T )  e.  A  \/  ( S 
.\/  T )  =  ( 0. `  K
) ) )
6560, 61, 62, 63, 64syl31anc 1221 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  ( ( S  .\/  T )  e.  A  \/  ( S 
.\/  T )  =  ( 0. `  K
) ) )
6665exp32 605 . . . 4  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  -> 
( ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  ->  ( ( S  .\/  T )  e.  A  \/  ( S 
.\/  T )  =  ( 0. `  K
) ) ) ) )
67 breq2 4291 . . . . . . . . 9  |-  ( ( ( T  .\/  V
)  ./\  ( P  .\/  Q ) )  =  ( 0. `  K
)  ->  ( ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  <->  ( S  .\/  T )  .<_  ( 0.
`  K ) ) )
6867biimpa 484 . . . . . . . 8  |-  ( ( ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  =  ( 0. `  K
)  /\  ( S  .\/  T )  .<_  ( ( T  .\/  V ) 
./\  ( P  .\/  Q ) ) )  -> 
( S  .\/  T
)  .<_  ( 0. `  K ) )
6928, 23, 12ople0 32672 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  ( S  .\/  T )  e.  ( Base `  K
) )  ->  (
( S  .\/  T
)  .<_  ( 0. `  K )  <->  ( S  .\/  T )  =  ( 0. `  K ) ) )
7059, 51, 69syl2anc 661 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( S  .\/  T )  .<_  ( 0. `  K )  <->  ( S  .\/  T )  =  ( 0. `  K ) ) )
7168, 70syl5ib 219 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( ( ( T  .\/  V ) 
./\  ( P  .\/  Q ) )  =  ( 0. `  K )  /\  ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) )  ->  ( S  .\/  T )  =  ( 0. `  K
) ) )
7271imp 429 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  =  ( 0.
`  K )  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  ( S  .\/  T )  =  ( 0. `  K ) )
7372olcd 393 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/= 
T ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( V  e.  A  /\  (
( T  .\/  V
)  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  /\  ( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  =  ( 0.
`  K )  /\  ( S  .\/  T ) 
.<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) ) ) )  ->  ( ( S  .\/  T )  e.  A  \/  ( S 
.\/  T )  =  ( 0. `  K
) ) )
7473exp32 605 . . . 4  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  =  ( 0.
`  K )  -> 
( ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  ->  ( ( S  .\/  T )  e.  A  \/  ( S 
.\/  T )  =  ( 0. `  K
) ) ) ) )
75 simp3r1 1096 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( T  .\/  V
)  =/=  ( P 
.\/  Q ) )
765, 52, 12, 62atmat0 33010 . . . . 5  |-  ( ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( T  .\/  V
)  =/=  ( P 
.\/  Q ) ) )  ->  ( (
( T  .\/  V
)  ./\  ( P  .\/  Q ) )  e.  A  \/  ( ( T  .\/  V ) 
./\  ( P  .\/  Q ) )  =  ( 0. `  K ) ) )
771, 3, 22, 42, 43, 75, 76syl33anc 1233 . . . 4  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( ( T 
.\/  V )  ./\  ( P  .\/  Q ) )  e.  A  \/  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  =  ( 0. `  K
) ) )
7866, 74, 77mpjaod 381 . . 3  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( S  .\/  T )  .<_  ( ( T  .\/  V )  ./\  ( P  .\/  Q ) )  ->  ( ( S  .\/  T )  e.  A  \/  ( S 
.\/  T )  =  ( 0. `  K
) ) ) )
7957, 78syld 44 . 2  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  -> 
( T  .<_  ( P 
.\/  Q )  -> 
( ( S  .\/  T )  e.  A  \/  ( S  .\/  T )  =  ( 0. `  K ) ) ) )
8020, 79mtod 177 1  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Basecbs 14166   lecple 14237   joincjn 15106   meetcmee 15107   0.cp0 15199   Latclat 15207   OPcops 32657   Atomscatm 32748   HLchlt 32835   LLinesclln 32975   LHypclh 33468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-p1 15202  df-lat 15208  df-clat 15270  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-llines 32982
This theorem is referenced by:  cdleme22cN  33826  cdleme27a  33851
  Copyright terms: Public domain W3C validator