Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22a Structured version   Unicode version

Theorem cdleme22a 35154
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 3rd line on p. 115. Show that t 
\/ v = p  \/ q implies v = u. (Contributed by NM, 30-Nov-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme22a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  =  U )

Proof of Theorem cdleme22a
StepHypRef Expression
1 simp1 996 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 1029 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 1030 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  Q  e.  A )
4 simp32 1033 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  P  =/=  Q )
5 simp31l 1119 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  e.  A )
6 simp31r 1120 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  .<_  W )
7 simp1l 1020 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  K  e.  HL )
8 simp23 1031 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  T  e.  A )
9 cdleme22.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdleme22.j . . . . 5  |-  .\/  =  ( join `  K )
11 cdleme22.a . . . . 5  |-  A  =  ( Atoms `  K )
129, 10, 11hlatlej2 34190 . . . 4  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  V  .<_  ( T  .\/  V ) )
137, 8, 5, 12syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  .<_  ( T  .\/  V
) )
14 simp33 1034 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  ( T  .\/  V )  =  ( P  .\/  Q
) )
1513, 14breqtrd 4471 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  .<_  ( P  .\/  Q
) )
16 cdleme22.m . . 3  |-  ./\  =  ( meet `  K )
17 cdleme22.h . . 3  |-  H  =  ( LHyp `  K
)
18 cdleme22.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
199, 10, 16, 11, 17, 18cdleme22aa 35153 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  V  .<_  W  /\  V  .<_  ( P  .\/  Q ) ) )  ->  V  =  U )
201, 2, 3, 4, 5, 6, 15, 19syl133anc 1251 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  T  e.  A )  /\  ( ( V  e.  A  /\  V  .<_  W )  /\  P  =/= 
Q  /\  ( T  .\/  V )  =  ( P  .\/  Q ) ) )  ->  V  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   lecple 14562   joincjn 15431   meetcmee 15432   Atomscatm 34078   HLchlt 34165   LHypclh 34798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-lhyp 34802
This theorem is referenced by:  cdleme22e  35158  cdleme22eALTN  35159
  Copyright terms: Public domain W3C validator