Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21h Structured version   Unicode version

Theorem cdleme21h 33334
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme21.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme21g.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme21g.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme21g.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme21g.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme21g.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
Assertion
Ref Expression
cdleme21h  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. z  e.  A  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( S  .\/  z
) )  ->  N  =  O ) )
Distinct variable groups:    z, A    z, H    z,  .\/    z, K   
z,  .<_    z, N    z, O    z, P    z, Q    z, R    z, S    z, T    z, U    z, W
Allowed substitution hints:    D( z)    F( z)    G( z)    ./\ ( z)    Y( z)

Proof of Theorem cdleme21h
StepHypRef Expression
1 simp11 1027 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp12 1028 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  (
( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q
) ) ) )
3 simp13l 1112 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
4 simp13r 1113 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )
5 simp2 998 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  z  e.  A )
6 simp3l 1025 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  -.  z  .<_  W )
7 simp3r 1026 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  ( P  .\/  z )  =  ( S  .\/  z
) )
85, 6, 7jca31 532 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  (
( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
9 cdleme21.l . . . 4  |-  .<_  =  ( le `  K )
10 cdleme21.j . . . 4  |-  .\/  =  ( join `  K )
11 cdleme21.m . . . 4  |-  ./\  =  ( meet `  K )
12 cdleme21.a . . . 4  |-  A  =  ( Atoms `  K )
13 cdleme21.h . . . 4  |-  H  =  ( LHyp `  K
)
14 cdleme21.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdleme21.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
16 cdleme21g.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
17 cdleme21g.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
18 cdleme21g.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
19 cdleme21g.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
20 cdleme21g.o . . . 4  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
219, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme21g 33333 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) ) )  ->  N  =  O )
221, 2, 3, 4, 8, 21syl113anc 1242 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  z  e.  A  /\  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )  ->  N  =  O )
2322rexlimdv3a 2897 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. z  e.  A  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( S  .\/  z
) )  ->  N  =  O ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2754   class class class wbr 4394   ` cfv 5525  (class class class)co 6234   lecple 14808   joincjn 15789   meetcmee 15790   Atomscatm 32262   HLchlt 32349   LHypclh 32982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-1st 6738  df-2nd 6739  df-preset 15773  df-poset 15791  df-plt 15804  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-p0 15885  df-p1 15886  df-lat 15892  df-clat 15954  df-oposet 32175  df-ol 32177  df-oml 32178  df-covers 32265  df-ats 32266  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-llines 32496  df-lplanes 32497  df-lvols 32498  df-lines 32499  df-psubsp 32501  df-pmap 32502  df-padd 32794  df-lhyp 32986
This theorem is referenced by:  cdleme21i  33335
  Copyright terms: Public domain W3C validator